Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 7923, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846476

ABSTRACT

The Bemisia cassava whitefly complex includes species that cause severe crop damage through vectoring cassava viruses in eastern Africa. Currently, this whitefly complex is divided into species and subgroups (SG) based on very limited molecular markers that do not allow clear definition of species and population structure. Based on 14,358 genome-wide SNPs from 62 Bemisia cassava whitefly individuals belonging to sub-Saharan African species (SSA1, SSA2 and SSA4), and using a well-curated mtCOI gene database, we show clear incongruities in previous taxonomic approaches underpinned by effects from pseudogenes. We show that the SSA4 species is nested within SSA2, and that populations of the SSA1 species comprise well-defined south-eastern (Madagascar, Tanzania) and north-western (Nigeria, Democratic Republic of Congo, Burundi) putative sub-species. Signatures of allopatric incipient speciation, and the presence of a 'hybrid zone' separating the two putative sub-species were also detected. These findings provide insights into the evolution and molecular ecology of a highly cryptic hemipteran insect complex in African, and allow the systematic use of genomic data to be incorporated in the development of management strategies for this cassava pest.


Subject(s)
Hemiptera/genetics , Hybridization, Genetic , Manihot/parasitology , Africa , Animals , Base Sequence , Electron Transport Complex IV/genetics , Gene Flow , Geography , Mitochondria/genetics , Phylogeny , Population Dynamics , Principal Component Analysis , Species Specificity
2.
Bull Entomol Res ; 110(5): 567-576, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32160930

ABSTRACT

The Bemisia tabaci species complex is one of the most important pests of open field and protected cropping globally. Within this complex, one species (Middle East Asia Minor 1, B. tabaci MEAM1, formerly biotype B) has been especially problematic, invading widely and spreading a large variety of plant pathogens, and developing broad spectrum pesticide resistance. Here, we fit a CLIMEX model to the distribution records of B. tabaci MEAM1, using experimental observations to calibrate its temperature responses. In fitting the model, we consider the effects of irrigation and glasshouses in extending its potential range. The validated niche model estimates its potential distribution as being considerably broader than its present known distribution, especially in the Americas, Africa and Asia. The potential distribution of the fitted model encompasses the known distribution of B. tabaci sensu lato, highlighting the magnitude of the threat posed globally by this invasive pest species complex and the viruses it vectors to open field and protected agriculture.


Subject(s)
Animal Distribution , Hemiptera/physiology , Temperature , Agricultural Irrigation , Animals , Asia , Crop Production/methods , Ecosystem , Introduced Species , Middle East
3.
Bull Entomol Res ; 110(3): 328-339, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31640818

ABSTRACT

Bemisia tabaci (Gennadius) represents a relatively large cryptic species complex. Australia has at least two native populations of B. tabaci sensu lato and these were first found on different host plants in different parts of Australia. The species status of these populations has not been resolved, although their mitochondrial sequences differ by 3.82-4.20%. We addressed the question of whether these AUSI and AUSII B. tabaci populations are distinct species. We used reciprocal cross-mating tests to establish whether the insects from these different populations recognize one another as potential mating partners. The results show that the two native Australian populations of B. tabaci have a mating sequence with four phases, each of which is described. Not all pairs in the control crosses mated and the frequency of mating differed across them. Some pairs in the AUSI-M × AUSII-F did mate (15%) and did produce female progeny, but the frequency was extremely low relative to controls. Microsatellite genotyping of the female progeny produced in the crosses showed these matings were successful. None of the AUSII-M × AUSI-F crosses mated although some of the males did search for females. These results demonstrate the critical role of the mate recognition process and the need to assess this directly in cross-mating tests if the species status of different populations is to be tested realistically. In short, AUSI and AUSII B. tabaci populations are distinct species because the individual males and females do not recognize individuals of the alternative population as potential mating partners.


Subject(s)
Hemiptera/classification , Hemiptera/physiology , Sexual Behavior, Animal , Animals , Australia , Female , Hemiptera/genetics , Male , Microsatellite Repeats , Species Specificity
4.
Bull Entomol Res ; 108(5): 565-582, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29433589

ABSTRACT

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of households in East Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. Here we assess critically the knowledge base relating to factors that may lead to high population densities of sub-Saharan African (SSA) B. tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver sustainable management solutions. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact population dynamics and natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps.


Subject(s)
Hemiptera/physiology , Manihot , Africa, Eastern , Animals , Farms , Manihot/growth & development , Population Density
5.
PLoS One ; 13(1): e0190555, 2018.
Article in English | MEDLINE | ID: mdl-29364919

ABSTRACT

Once considered a single species, the whitefly, Bemisia tabaci, is a complex of numerous morphologically indistinguishable species. Within the last three decades, two of its members (MED and MEAM1) have become some of the world's most damaging agricultural pests invading countries across Europe, Africa, Asia and the Americas and affecting a vast range of agriculturally important food and fiber crops through both feeding-related damage and the transmission of numerous plant viruses. For some time now, researchers have relied on a single mitochondrial gene and/or a handful of nuclear markers to study this species complex. Here, we move beyond this by using 38,041 genome-wide Single Nucleotide Polymorphisms, and show that the two invasive members of the complex are closely related species with signatures of introgression with a third species (IO). Gene flow patterns were traced between contemporary invasive populations within MED and MEAM1 species and these were best explained by recent international trade. These findings have profound implications for delineating the B. tabaci species status and will impact quarantine measures and future management strategies of this global pest.


Subject(s)
Hemiptera/genetics , Agriculture , Animals , Genome-Wide Association Study
6.
Bull Entomol Res ; 108(1): 5-13, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28532532

ABSTRACT

Trialeurodes vaporariorum (Westwood, 1856) (Greenhouse whitefly) is an agricultural pest of global importance. It is associated with damage to plants during feeding and subsequent virus transmission. Yet, global phylogenetic relationships, population structure, and estimation of the rates of gene flow within this whitefly species remain largely unexplored. In this study, we obtained and filtered 227 GenBank records of mitochondrial cytochrome c oxidase I (mtCOI) sequences of T. vaporariorum, across various global locations to obtain a final set of 217 GenBank records. We further amplified and sequenced a ~750 bp fragment of mtCOI from an additional 31 samples collected from Kenya in 2014. Based on a total of 248 mtCOI sequences, we identified 16 haplotypes, with extensive overlap across all countries. Population structure analysis did not suggest population differentiation. Phylogenetic analysis indicated the 2014 Kenyan collection of samples clustered with a single sequence from the Netherlands to form a well-supported clade (denoted clade 1a) nested within the total set of sequences (denoted clade 1). Pairwise distances between sequences show greater sequence divergence between clades than within clades. In addition, analysis using migrate-n gave evidence for recent gene flow between the two groups. Overall, we find that T. vaporariorum forms a single large group, with evidence of further diversification consisting primarily of Kenyan sequences and one sequence from the Netherlands forming a well-supported clade.


Subject(s)
Gene Flow , Hemiptera/genetics , Phylogeny , Animals , Phylogeography
7.
Sci Rep ; 7(1): 429, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28348369

ABSTRACT

Museum specimens represent valuable genomic resources for understanding host-endosymbiont/parasitoid evolutionary relationships, resolving species complexes and nomenclatural problems. However, museum collections suffer DNA degradation, making them challenging for molecular-based studies. Here, the mitogenomes of a single 1912 Sri Lankan Bemisia emiliae cotype puparium, and of a 1942 Japanese Bemisia puparium are characterised using a Next-Generation Sequencing approach. Whiteflies are small sap-sucking insects including B. tabaci pest species complex. Bemisia emiliae's draft mitogenome showed a high degree of homology with published B. tabaci mitogenomes, and exhibited 98-100% partial mitochondrial DNA Cytochrome Oxidase I (mtCOI) gene identity with the B. tabaci species known as Asia II-7. The partial mtCOI gene of the Japanese specimen shared 99% sequence identity with the Bemisia 'JpL' genetic group. Metagenomic analysis identified bacterial sequences in both Bemisia specimens, while hymenopteran sequences were also identified in the Japanese Bemisia puparium, including complete mtCOI and rRNA genes, and various partial mtDNA genes. At 88-90% mtCOI sequence identity to Aphelinidae wasps, we concluded that the 1942 Bemisia nymph was parasitized by an Eretmocerus parasitoid wasp. Our approach enables the characterisation of genomes and associated metagenomic communities of museum specimens using 1.5 ng gDNA, and to infer historical tritrophic relationships in Bemisia whiteflies.


Subject(s)
DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Fossils , Hemiptera/genetics , Animals , Asia , Bacteria/genetics , Electron Transport Complex IV/genetics , High-Throughput Nucleotide Sequencing , Hymenoptera/genetics , Metagenomics , Sequence Analysis, DNA , Sequence Homology
8.
Article in English | MEDLINE | ID: mdl-24960562

ABSTRACT

The complete length of the Asia I member of the Bemisia tabaci species complex mitochondrial DNA genome (mitogenome) is 15,210 bp (GenBank accession no. KJ778614) with an A-T biased nucleotide composition (A: 32.7%; T: 42.4%; G: 14.0%; C: 10.8%). The mitogenome consists of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNA (rRNAs) and a 467 bp putative control region which also includes the A+T rich repeat region. All PCGs have an ATA (n = 8) or ATG (n = 5) start codon. Gene synteny of Asia I is overall similar to B. afer and two other members of the B. tabaci species complex Mediterranean and New World 1, and contains the tRNA-Ser2 located between the Cytb and ND1 genes found in Mediterranean and New World 1, but which is absent in B. afer. The orientation of the tRNA-Arg in Asia I is on the "plus" strand and differed from Mediterranean which is found on the "minus" strand. The Asia I mitogenome size is currently ranked the second smallest after B. afer (14,968 bp) followed by New World 1 (15,322 bp) and Mediterranean (15,632 bp).


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Hemiptera/genetics , Animals , Asia , Codon/genetics , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics
9.
Bull Entomol Res ; 102(5): 573-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22717059

ABSTRACT

Relationships among worldwide collections of Diaphorina citri (Asian citrus psyllid) were analyzed using mitochondrial cytochrome oxidase I (mtCOI) haplotypes from novel primers. Sequences were produced from PCR amplicons of an 821bp portion of the mtCOI gene using D. citri specific primers, derived from an existing EST library. An alignment was constructed using 612bps of this fragment and consisted of 212 individuals from 52 collections representing 15 countries. There were a total of eight polymorphic sites that separated the sequences into eight different haplotypes (Dcit-1 through Dcit-8). Phylogenetic network analysis using the statistical parsimony software, TCS, suggests two major haplotype groups with preliminary geographic bias between southwestern Asia (SWA) and southeastern Asia (SEA). The recent (within the last 15 to 25 years) invasion into the New World originated from only the SWA group in the northern hemisphere (USA and Mexico) and from both the SEA and SWA groups in the southern hemisphere (Brazil). In only one case, Reunion Island, did haplotypes from both the SEA and SWA group appear in the same location. In Brazil, both groups were present, but in separate locations. The Dcit-1 SWA haplotype was the most frequently encountered, including ~50% of the countries sampled and 87% of the total sequences obtained from India, Pakistan and Saudi Arabia. The second most frequently encountered haplotype, Dcit-2, the basis of the SEA group, represented ~50% of the countries and contained most of the sequences from Southeast Asia and China. Interestingly, only the Caribbean collections (Puerto Rico and Guadeloupe) represented a unique haplotype not found in other countries, indicating no relationship between the USA (Florida) and Caribbean introductions. There is no evidence for cryptic speciation for D. citri based on the COI region included in this study.


Subject(s)
Electron Transport Complex IV/genetics , Genetic Variation , Haplotypes , Hemiptera/enzymology , Hemiptera/genetics , Insect Proteins/genetics , Animals , Mitochondrial Proteins/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
10.
Bull Entomol Res ; 102(5): 539-49, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22420748

ABSTRACT

Organisms differ greatly in dispersal ability, and landscapes differ in amenability to an organism's movement. Thus, landscape structure and heterogeneity can affect genetic composition of populations. While many agricultural pests are known for their ability to disperse rapidly, it is unclear how fast and over what spatial scale insect pests might respond to the temporally dynamic agricultural landscapes they inhabit. We used population genetic analyses of a severe crop pest, a member of the Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidea) cryptic species complex known as Middle East-Asia Minor 1 (commonly known as biotype B), to estimate spatial and temporal genetic diversity over four months of the 2006-2007 summer growing season. We examined 559 individuals from eight sites, which were scored for eight microsatellite loci. Temporal genetic structure greatly exceeded spatial structure. There was significant temporal change in local genetic composition from the beginning to the end of the season accompanied by heterozygote deficits and inbreeding. This temporal structure suggests entire cohorts of pests can occupy a large and variable agricultural landscape but are rapidly replaced. These rapid genetic fluctuations reinforce the concept that agricultural landscapes are dynamic mosaics in time and space and may contribute to better decisions for pest and insecticide resistance management.


Subject(s)
Genetic Variation , Hemiptera/genetics , Microsatellite Repeats , Agriculture , Animals , Geography , Insect Control , Polymerase Chain Reaction , Queensland , Seasons
11.
J Econ Entomol ; 105(1): 48-53, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22420254

ABSTRACT

The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex that contains some of the most damaging pests in tropical and subtropical regions. Recent studies suggested that this complex is composed of at least 24 distinct species. We use the approach from these studies to consider the identity of B. tabaci in Argentina. Previous studies have suggested the presence of a B. tabaci presumably indigenous to the Americas and referred to as the BR biotype in Argentina. We placed the entity referred to as the BR biotype within the B. tabaci cryptic species complex using whiteflies collected in soybean and bean crops in northern and central Argentina. The whiteflies were assigned using the mitochondrial cytochrome oxidase (mtCOI) gene. Four unknown haplotypes plus two Argentina sequences from GenBank formed a cluster that was basal to the rest of the New World sequences. These sequences diverged from the consensus sequence across the range of 3.6 to 4.3%. Applying the species assignment rules of recent studies suggests that the individuals from Argentina form a separate species. A fifth unknown haplotype fell within the New World putative species and formed a distinct cluster with haplotypes from Panama. These results suggest that Argentina has two indigenous species belonging to the B. tabaci cryptic species complex. Rather than using mtCOI sequencing for all B. tabaci collected, a simple random amplified polymorphic DNA-polymerase chain reaction diagnostic was used and tested along with previously published primers designed to work specifically with the BR biotype from Brazil. These primers were either unable to distinguish between the two indigenous members of the complex in Argentina or indicated a difference when none was evident on the basis of mtCOI sequence comparison.


Subject(s)
Hemiptera/classification , Hemiptera/genetics , Random Amplified Polymorphic DNA Technique/methods , Animals , Argentina , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Fabaceae , Female , Haplotypes , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
12.
Bull Entomol Res ; 101(4): 467-75, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21320364

ABSTRACT

It is often considered that reduced genetic variation due to bottlenecks and founder effects limits the capacity for species to establish in new environments and subsequently spread. The recent invasion (during the past five years) of an alien whitefly, one member of Bemisia tabaci cryptic species complex, referred to as Mediterranean (herein referred to as Q-type) in Shandong Province, China, provides an ideal opportunity to study the changes in genetic variation between its home range in the Mediterranean region and its invasion range. Using both the mitochondrial cytochrome oxidase I (mtCOI) and nuclear (microsatellite) DNA, we show that Q in Shandong likely originated in the western Mediterranean. We also found that the haplotype diversity was low compared with its presumed geographic origin, whereas microsatellite allele diversity showed no such decline. A key factor in invasions is the establishment of females and so bottleneck and founder events can lead to a very rapid and considerable loss of mitochondrial diversity. The lack of haplotype diversity in Shandong supports the interpretation that, at one or more points between the western Mediterranean and China, the invading Q lost haplotype diversity, most probably through the serial process of establishment and redistribution through trade in ornamental plants. However, the loss in haplotype diversity does not necessarily mean that nuclear allelic diversity should also decline. Provided females can mate freely with whichever males are available, allelic diversity can be maintained or even increased relative to the origin of the invader. Our findings may offer some explanation to the apparent paradox between the concept of reduced genetic variation limiting adaptation to new environments and the observed low diversity in successful invaders.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Hemiptera/genetics , Introduced Species , Animals , Biological Evolution , Cell Nucleus/genetics , China , Female , Haplotypes , Male , Microsatellite Repeats , Morocco , Spain
13.
Bull Entomol Res ; 101(4): 477-86, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21329550

ABSTRACT

The percentage infection of secondary symbionts (SS) (Wolbachia, Arsenophonus, Rickettsia, Hamiltonella, Fritschea and Cardinium) in the exotic Bemisia tabaci (Genn.) invaders, commonly known as biotypes B and Q from China, were determined by PCR. In total, 373 biotype B and 1830 biotype Q individuals were screened for the presence of SS. Biotype B was more abundant than biotype Q from 2005 to 2006, and biotype Q was more abundant from 2007 to 2009. Each of the SS, with the exception of Fritschea, was detected in both biotypes B and Q; Fritschea was found in none of the samples examined. For biotype B, the percentage infection of Hamiltonella was the highest (92.0%) followed by Rickettsia (70.2%). For biotype Q, the percentage infection of Hamiltonella was again the highest (73.3%). Arsenophonus was the least common of the SS observed in both biotypes B and Q. The percentage infection of Wolbachia, Rickettsia and Hamiltonella in biotype B was each significantly higher than in biotype Q, whereas the percentage infection of Cardinium in biotype B was significantly lower than in biotype Q. The percentage infection of SS in biotypes B and Q varied from year to year over the period 2005-2009. Furthermore, within biotype Q, two distinct subgroups were identified which differ from each other in terms of their SS complement. We discuss these results in the light of the potentially influential factors and roles of the SS.


Subject(s)
Hemiptera/microbiology , Symbiosis , Animals , Bacterial Typing Techniques , China , Introduced Species , Mediterranean Region , Rickettsia/classification , Rickettsia/isolation & purification , Wolbachia/classification , Wolbachia/isolation & purification
14.
Bull Entomol Res ; 100(3): 359-66, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20178675

ABSTRACT

The worldwide distribution and extensive genetic diversity of the whitefly Bemisia tabaci has long been recognized. However, whether B. tabaci is a complex species or a species complex has been a subject of debate. Recent phylogenetic analyses suggest that B. tabaci is a cryptic species complex composed of at least 24 morphologically indistinguishable species. Here, we conducted crossing experiments and demonstrated reproductive incompatibility among three of the 24 putative species. Our data and those of previously reported crossing experiments among various putative species of B. tabaci were collated to reveal the pattern of reproductive isolation. The combined results provide strong support to the proposition that B. tabaci is a cryptic species complex.


Subject(s)
Hemiptera/physiology , Reproduction/genetics , Animals , Crosses, Genetic , Female , Hemiptera/genetics , Male , Species Specificity
15.
Bull Entomol Res ; 99(2): 193-206, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18947454

ABSTRACT

Bemisia tabaci biotype B is a significant pest of agriculture world-wide. It was first detected in Australia in 1994. Assessments of the potential of parasitoids already present in Australia to control this pest indicated that two species of Eretmocerus and 11 species of Encarsia were present, but they did not exert sufficient control with a combined average of 5.0+/-0.3% apparent parasitism of 4th instars. Further, only 25% of samples containing biotype B had parasitised individuals present. The surveys also identified that fewer B biotype were being parasitised compared with the Australian indigenous biotype. Overall, Er. mundus was the most abundant parasitoid prior to the introduction. Previous research indicated that Er. hayati offered the best prospects for Australia and, in October 2004, the first releases were made. Since then, levels of apparent parasitism have averaged 29.3+/-0.1% of 4th instars with only 24% of collections having no parasitism present. Eretmocerus hayati contributed 85% of the overall apparent parasitism. In addition, host plants of the whitefly with low or no parasitism prior to the release have had an order of magnitude increase in levels of parasitism. This study covers the establishment of the case to introduce Er. hayati and the post-release establishment period November 2004-March 2008.


Subject(s)
Hemiptera/physiology , Hemiptera/parasitology , Pest Control, Biological , Wasps/physiology , Animals , Australia , Female , Host-Parasite Interactions , Male , Phylogeny , Plants/parasitology , Time Factors
16.
Bull Entomol Res ; 99(4): 325-35, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19063758

ABSTRACT

Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system. Population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.


Subject(s)
Crops, Agricultural/parasitology , Demography , Hemiptera/physiology , Seasons , Animals , Nymph/physiology , Population Dynamics , Queensland
17.
Science ; 318(5857): 1769-72, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-17991828

ABSTRACT

The role of behavioral mechanisms in animal invasions is poorly understood. We show that asymmetric mating interactions between closely related but previously allopatric genetic groups of the whitefly Bemisia tabaci, a haplodiploid species, have been a driving force contributing to widespread invasion and displacement by alien populations. We conducted long-term field surveys, caged population experiments, and detailed behavioral observations in Zhejiang, China, and Queensland, Australia, to investigate the invasion process and its underlying behavioral mechanisms. During invasion and displacement, we found increased frequency of copulation leading to increased production of female progeny among the invader, as well as reduced copulation and female production in the indigenous genetic groups. Such asymmetric mating interactions may be critical to determining the capacity of a haplodiploid invader and the consequences for its closely related indigenous organisms.


Subject(s)
Ecosystem , Hemiptera/physiology , Sexual Behavior, Animal , Animals , China , Copulation , Female , Hemiptera/classification , Hemiptera/genetics , Male , Population Dynamics , Queensland , Reproduction , Sex Ratio
18.
Bull Entomol Res ; 97(4): 433-6, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17645825

ABSTRACT

Bemisia tabaci biotype B is one of three genetic groups able to induce silverleafing in squash. Several earlier studies had observed that this physiological change was induced only through the feeding of juvenile whiteflies. This study uses adult males only to show that after 11 days the adult males were able to begin to induce silverleafing. Further, the response was density-dependent with 120 adults inducing the first signs of silverleafing in 11 days, 90 adults in 13 days and 60 adults in 15 days.


Subject(s)
Cucurbita/parasitology , Feeding Behavior/physiology , Hemiptera/physiology , Animals , Nymph , Plant Diseases
19.
Mol Ecol ; 14(12): 3695-718, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16202090

ABSTRACT

Bemisia tabaci (Hemiptera: Aleyrodidae) is a haplo-diploid species of sap-feeding insect belonging to the group of insects commonly known as whiteflies. From earlier analyses of mitochondrial and ribosomal markers it has been concluded that in the Asia-Pacific region there were three major indigenous races as well as a large collection of genotypes with no clear association with any race. This new study uses 15 microsatellite loci and demonstrates that the indigenous Asia-Pacific genotypes can be split into six genetic populations with little or no gene flow between them. These bare only superficial similarity to the mitochondrial and ribosomal defined races. Moreover, four of the six can be further split into two subpopulations that again show little evidence gene flow between them. While the patterns reflect a strong geographical structure, physical barriers alone cannot explain all the observed structure. Differential host-plant utilization explained some of the substructure, but could not explain the overall structure. The roles of mating interference and Wolbachia in developing the genetic structure are considered. The lack of gene flow between genetic populations and some subpopulations further suggests that the barriers were either sufficiently impermeable to immigration or that reproductive isolation and competitive interactions were sufficiently strong to prevent gene flow. If the latter is the case, it suggests that there may be as many as 10 morphologically indistinguishable species indigenous to the Asia-Pacific region.


Subject(s)
Genetic Variation , Hemiptera/genetics , Phylogeny , Animals , Asia , Australia , Female , Genotype , Indonesia , Microsatellite Repeats
20.
Bull Entomol Res ; 95(4): 313-9, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048679

ABSTRACT

The developmental, survivorship and reproductive biology of Eretmocerus sp. nr furuhashii Rose & Zolnerowich parasitizing Bemisia tabaci (Gennadius) biotype B on tomato, cucumber, eggplant and collard at 26+/-0.5 degrees C was studied. The mean longevity ranged from 6.5 days on tomato to 8.1 days on collard. The mean lifetime fecundities on tomato, cucumber, eggplant and collard were 35.4, 37.3, 41.4 and 46.4 eggs, whereas the mean lifetime fertility was 20.2, 22.7, 28.3 and 33.6 offspring, respectively. Developmental time was longest on cucumber (17.1 days) and shortest on collard (15.9 days). Survival rates varied significantly across host plants. Sex ratio (female symbol:male symbol) varied from 1.71 to 1.93 across the four hosts. The intrinsic rate of increase (rm) was highest (0.157) on collard and lowest on tomato (0.133). Mean generation time (R0) ranged from 14.7 to 20.9 days. All the data demonstrated that the reproductive success and overall performance of E. sp. nr furuhashii increased as the density of leaf hairs declined. As leaf hairs play a key role in determining efficacy, it is unlikely that effective biological control of B. tabaci using E. sp. nr furuhashii will be achieved on non-glabrous crop varieties.


Subject(s)
Hemiptera/parasitology , Hymenoptera/physiology , Vegetables/parasitology , Animals , Female , Fertility/physiology , Hemiptera/physiology , Host-Parasite Interactions , Hymenoptera/growth & development , Male , Reproduction , Survival Rate , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...