Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 53: 110199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38406256

ABSTRACT

The current dataset brings raw compression test information of a vegetable-based polyurethane foam (PUF) exposed to different temperatures over different periods of time. Such experimental dataset can provide researchers with important information in the application of numerical and data-driven simulations. Also, it saves money and time once the experimental part is already available. At total, 90 compression tests were done following the ASTM D1621-16 standard with pictures for digital image correlation (DIC) being simultaneously acquired. The 90 specimens were divided in nine different ageing conditions. The foam was considered transversely isotropic, thus, 10 specimens for each condition were divided in two groups, five specimens for direction 1 and five for direction 3, where direction 3 is the foam expansion direction. The 3D DIC results show longitudinal and transverse strains from virtual extensometers. The results are available in .TRA and .csv files for the tests and DIC outputs, respectively. Also, the dataset brings the pictures used for DIC in .TIF format. It also brings the dimensions of each specimen prior to the test in .txt format. These results provide information for the calculation of major mechanical properties that can be freely used in finite element models for different and creative ways to simulate the ageing process of a vegetable-based PUF.

2.
Polymers (Basel) ; 15(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050398

ABSTRACT

The aim of this work is to evaluate the changes in compression properties of a bio-based polyurethane foam after exposure to 90 °C for different periods of time, and to propose a method to extrapolate these results and use a numerical approach to predict the compression behaviour after degradation for untested conditions at different degradation times and temperatures. Bio-based polymers are an important sustainable alternative to oil-based materials. This is explained by the foaming process and the density along the material as it was possible to see in a digital image correlation analysis. After 60 days, stiffness was approximately decreased by half in both directions. The decrease in yield stress due to thermo-oxidative degradation had a minor effect in the foaming directions, changing from 352 kPa to 220 kPa after 60 days, and the transverse property was harshly impacted changing from 530 kPa to 265 kPa. The energy absorption efficiency was slightly affected by degradation. The simulation of the compression stress-strain curves were in accordance to the experimental data and made it possible to predict the changes in mechanical properties for intermediate periods of degradation time. The plateau stress for the unaged foam transverse to the foaming direction presented experimental and numerical values of 450 kPa and 470 kPa, respectively. In addition, the plateau stresses in specimens degraded for 40 days present very similar experimental and numerical results in the same direction, at 310 kPa and 300 kPa, respectively. Therefore, this paper presents important information regarding the life-span and degradation of a green PUF. It provides insights into how compression properties vary along degradation time as function of material operation temperature, according to the Arrhenius degradation equation.

3.
Materials (Basel) ; 11(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29772733

ABSTRACT

Blending of biodegradable polymers in combination with low-price organic fillers has proven to be a suitable approach to produce cost-effective composites in order to address pollution issues and develop products with superior mechanical properties. In the present research work PBAT/PHB/Babassu composites with 25, 50, and 75% of each polymer and 20% of Babassu were produced by melting extrusion. Their thermal, mechanical, and morphological behavior was investigated by differential scanning calorimetry (DSC), tensile testing, and scanning electron microscopy (SEM). Blending PBAT with PHB inhibited the crystallization of both polymers whereas adding Babassu did not significantly change their melting behaviour. Incorporation of Babassu reduced the tensile strength of its respective blends between 4.8 and 32.3%, and elongation at break between 26.0 and 66.3%. PBAT as highly ductile and low crystalline polymer may be seen as a crystallization tool control for PHB as well as a plasticizer to PBAT/PHB blends and PBAT/PHB/Babassu composites. As PBAT content increases: (i) elongation at break increases and (ii) surface fracture becomes more refined indicating the presence of more energy dissipation mechanisms. As PBAT/PHB/Babassu composites are biodegradable, environmental friendly, and cost effective, products based on these compounds have a great potential since their mechanical properties such as ductility, stiffness, and tensile strength are still suitable for several applications even at lower temperatures (-40 °C).

SELECTION OF CITATIONS
SEARCH DETAIL
...