Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 44(15): 7219-27, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27131370

ABSTRACT

The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.


Subject(s)
Bacteriophage P2/chemistry , DNA, Viral/chemistry , DNA, Viral/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Nanotechnology/methods , Single Molecule Imaging/methods , Viral Proteins/chemistry , Viral Proteins/metabolism , Crystallography, X-Ray , DNA, Viral/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Microscopy, Atomic Force , Microscopy, Fluorescence , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Nanotechnology/instrumentation , Single Molecule Imaging/instrumentation , Viral Proteins/genetics , Viral Proteins/ultrastructure
2.
Toxicology ; 313(1): 59-69, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-23891735

ABSTRACT

Cu-containing nanoparticles are used in various applications in order to e.g. achieve antimicrobial activities and to increase the conductivity of fluids and polymers. Several studies have reported on toxic effects of such particles but the mechanisms are not completely clear. The aim of this study was to investigate the interactions between cell membranes and well-characterized nanoparticles of CuO, Cu metal, a binary Cu-Zn alloy and micron-sized Cu metal particles. This was conducted via in vitro investigations of the effects of the nanoparticles on (i) cell membrane damage on lung epithelial cells (A549), (ii) membrane rupture of red blood cells (hemolysis), complemented by (iii) nanoparticle interaction studies with a model lipid membrane using quartz crystal microbalance with dissipation monitoring (QCM-D). The results revealed that nanoparticles of the Cu metal and the Cu-Zn alloy were both highly membrane damaging and caused a rapid (within 1h) increase in membrane damage at a particle mass dose of 20 µg/mL, whereas the CuO nanoparticles and the micron-sized Cu metal particles showed no such effect. At similar nanoparticle surface area doses, the nano and micron-sized Cu particles showed more similar effects. The commonly used LDH (lactate dehydrogenase) assay for analysis of membrane damage was found impossible to use due to nanoparticle-assay interactions. None of the particles induced any hemolytic effects on red blood cells when investigated up to high particle concentrations (1mg/mL). However, both Cu and Cu-Zn nanoparticles caused hemoglobin aggregation/precipitation, a process that would conceal a possible hemolytic effect. Studies on interactions between the nanoparticles and a model membrane using QCM-D indicated a small difference between the investigated particles. Results of this study suggest that the observed membrane damage is caused by the metal release process at the cell membrane surface and highlight differences in reactivity between metallic nanoparticles of Cu and Cu-Zn and nanoparticles of CuO.


Subject(s)
Cell Membrane/drug effects , Copper/toxicity , Epithelial Cells/drug effects , Metal Nanoparticles/toxicity , Alloys/chemistry , Alloys/toxicity , Cell Line , Cell Membrane/pathology , Copper/chemistry , Epithelial Cells/pathology , Hemoglobins/metabolism , Hemolysis/drug effects , Humans , Lung/cytology , Lung/drug effects , Metal Nanoparticles/chemistry , Particle Size , Proteins/metabolism , Quartz Crystal Microbalance Techniques , Zinc/chemistry , Zinc/toxicity
3.
Acta Biomater ; 9(9): 8158-66, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23747326

ABSTRACT

Molecular interactions involving glycosaminoglycans (GAGs) are important for biological processes in the extracellular matrix (ECM) and at cell surfaces, and also in biotechnological applications. Enzymes in the ECM constantly modulate the molecular structure and the amount of GAGs in our tissues. Specifically, the changeable sulfation patterns of many GAGs are expected to be important in interactions with proteins. Biotinylation is a convenient method for immobilizing molecules to surfaces. When studying interactions at the molecular, cell and tissue level, the native properties of the immobilized molecule, i.e. its biofunctionality, need to be retained upon immobilization. Here, the GAGs hyaluronan (HA) and chondroitin sulfate (CS), and synthetically sulfated derivatives of the two, were immobilized using biotin-streptavidin binding. The degree of biotinylation and the placement of biotin groups (end-on/side-on) were varied. The introduction of biotin groups could have unwanted effects on the studied molecule, but this aspect that is not always straightforward to evaluate. Hyaluronidase, an enzyme that degrades HA and CS in the ECM, was investigated as a probe to evaluate the biofunctionality of the immobilized GAGs, using both quartz crystal microbalance and high-performance liquid chromatography. Our results showed that end-on biotinylated HA was efficiently degraded by hyaluronidase, whereas already a low degree of side-on biotinylation destroyed the degrading ability of the enzyme. Synthetically introduced sulfate groups also had this effect. Hence hyaluronidase degradation is a cheap and easy way to investigate how molecular function is influenced by the introduced functional groups. Binding experiments with the proteoglycan aggrecan emphasized the influence of protein size and surface orientation of the GAGs for in-depth studies of GAG behavior.


Subject(s)
Aggrecans/chemistry , Chondroitin Sulfates/chemistry , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/chemistry , Biotinylation , Enzyme Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...