Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; : 174875, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029753

ABSTRACT

The massive extraction of virgin raw materials has substantially intensified the focus on circular economy of building materials. As a Cradle-to-Cradle service life and circular approach for lime-based construction materials (LBCM) is lacking, the present study evaluates the environmental impact and feasibility of creating a fully recycled second-life render (SL) by designing a closed-loop upcycling process for first-life renders (FL). To achieve this, a second-life binder was thermally activated (900, 1000, 1100, 1200 °C), while its microstructure, compressive strength, and thermal conductivity were investigated. SL had up to 33 % open porosity (FL 29 %), its compressive strength ranged from 2.5 to 3.4 MPa (FL 4.4 MPa) and the thermal conductivity from 1.002 to 1.107 W/mK (FL 1.231 W/mK). Resistance of SL and FL against sulfate attack was found to be equivalent, measured based on the recent RILEM TC 271-ASC recommendation. The environmental impact indicators integrating material properties and durability confirm that the second life-render can reduce CO2 emissions up to 55 %. The present research provides insights into unlocking essential sustainability gains through circular practices in the life-cycle of LBCM.

2.
ACS Sustain Chem Eng ; 11(49): 17519-17531, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38313417

ABSTRACT

In this study, a hybrid alkali-activated ground-granulated cement consisting of 70% blast furnace slag (GGBFS) and 30% Portland cement (PC) activated with sodium sulfate was studied. Results were compared with those of a blended system without an activator. The addition of the activator significantly increased the kinetics and degree of reaction of these cements, particularly at early curing ages (2 days), without leading to significant changes in the phase assemblage. The main reaction product formed was an aluminum-substituted calcium silicate hydrate (C-A-S-H) type gel, with a Ca/Si ratio comparable to that of the activator-free blended cement; however, in the presence of the activator, sorption of sulfur was observed in the C-A-S-H phase. The formation of secondary phases including ettringite and Ca- or Mg-rich layered double hydroxides was also identified in these cements depending on the curing age and activation addition. This study demonstrates the effectiveness of sodium sulfate in accelerating the phase assemblage evolution in high-GGBFS-content PC-blended cements without leading to significant changes in the reaction products formed, particularly at advanced curing ages. This represents a step forward in the development of cements with a reduced clinker factor.

3.
Mater Struct ; 55(3): 99, 2022.
Article in English | MEDLINE | ID: mdl-35401024

ABSTRACT

Many (inter)national standards exist to evaluate the resistance of mortar and concrete to carbonation. When a carbonation coefficient is used for performance comparison of mixtures or service life prediction, the applied boundary conditions during curing, preconditioning and carbonation play a crucial role, specifically when using latent hydraulic or pozzolanic supplementary cementitious materials (SCMs). An extensive interlaboratory test (ILT) with twenty two participating laboratories was set up in the framework of RILEM TC 281-CCC 'Carbonation of Concrete with SCMs'. The carbonation depths and coefficients determined by following several (inter)national standards for three cement types (CEM I, CEM II/B-V, CEM III/B) both on mortar and concrete scale were statistically compared. The outcomes of this study showed that the carbonation rate based on the carbonation depths after 91 days exposure, compared to 56 days or less exposure duration, best approximates the slope of the linear regression and those 91 days carbonation depths can therefore be considered as a good estimate of the potential resistance to carbonation. All standards evaluated in this study ranked the three cement types in the same order of carbonation resistance. Unfortunately, large variations within and between laboratories complicate to draw clear conclusions regarding the effect of sample pre-conditioning and carbonation exposure conditions on the carbonation performance of the specimens tested. Nevertheless, it was identified that fresh and hardened state properties alone cannot be used to infer carbonation resistance of the mortars or concretes tested. It was also found that sealed curing results in larger carbonation depths compared to water curing. However, when water curing was reduced from 28 to 3 or 7 days, higher carbonation depths compared to sealed curing were observed. This increase is more pronounced for CEM I compared to CEM III mixes. The variation between laboratories is larger than the potential effect of raising the CO2 concentration from 1 to 4%. Finally, concrete, for which the aggregate-to-cement factor was increased by 1.79 in comparison with mortar, had a carbonation coefficient 1.18 times the one of mortar. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-01927-7.

4.
Materials (Basel) ; 15(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35208109

ABSTRACT

Concrete structures are often exposed to harsh environmental conditions during their service life. Therefore, the investigation of transport properties and deterioration of concrete in different environments is an important topic. This paper reports the influence of salts (NaCl and Na2SO4) and exposure conditions (ideal laboratory (20 °C, 95% RH), a city and sea environment; including sheltered and exposed conditions) on capillary imbibition in cementitious materials with different water to cement ratios (0.4 and 0.6). First, the pore structure was assessed by water absorption under vacuum, torrent permeability, resistivity, and moisture content. The second part revolves around the capillary imbibition phenomenon with different imbibition liquids (water, NaCl, and Na2SO4). The results showed that, among the studied exposure conditions, sheltered conditions resulted in the largest porosity values and capillary imbibition rates (CIR). The influence of the imbibing liquid on the CIR depends on the w/c of the concrete. The CIR value for samples with a w/c of 0.4 is lower for Na2SO4 as imbibing liquid in comparison to water and NaCl. The sulfates might cause a pore blocking effect leading to a decreased CIR. For concrete with a w/c of 0.6, there was no significant difference between the different imbibition liquids. The influence of the pore blocking effect is probably smaller due to the larger porosity in this case. The findings of this research are important to understand the influence of real-life exposure conditions and therefore the influence of relative humidity, temperature, carbonation, and chloride ingress on the capillary imbibition phenomenon.

5.
Materials (Basel) ; 14(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34442928

ABSTRACT

As one of the major causes of concrete deterioration, the carbonation of concrete has been widely investigated over recent decades. In recent years, the effect of mechanical load on carbonation has started to attract more attention. The load-induced variations in crack pattern and pore structure have a significant influence on CO2 transport which determines the carbonation rate. With different types of load, the number, orientation, and position of the induced cracks can be different, which will lead to different carbonation patterns. In this review paper, the carbonation in cracked and stress-damaged concrete is discussed first. Then, literature about the effect of sustained load during carbonation is compared in terms of load type and load level. Finally, the advantages and disadvantages of possible test methods for investigating the effect of sustained load on carbonation are discussed with respect to loading devices, load compensation, and specimen size.

6.
Materials (Basel) ; 14(13)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34279312

ABSTRACT

Beneficiating fly ash as valuable construction material such as artificial lightweight aggregate (LWA) could be an alternative solution to increase the utilization of the industrial by-product. However, generally, LWA is characterized by high porosity and a related high water absorption, which on the one hand allows production of lightweight mortar, but on the other hand can affect its performance. Thus, in this research, the durability performance of mortar composed with alkali-activated fly ash-based LWA, and commercial expanded clay (EC) LWA was investigated. The fly ash LWA was prepared in a pan granulator, with a 6-molar solution of NaOH mixed with Na2SiO3 in a Na2SiO3/NaOH weight ratio of 1.5 being used as activator (FA 6M LWA). The results revealed that mortar containing FA 6M LWA had equivalent mechanical strength with mortar containing EC LWA. The mortar containing FA 6M LWA had comparable capillary water uptake and chloride migration resistance with the reference and EC LWA mortar. Furthermore, the addition of FA 6M LWA was proven to enhance the carbonation resistance in the resulting mortar, due to the denser interfacial transition zone (ITZ) of mortar with LWA.

7.
Materials (Basel) ; 14(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801274

ABSTRACT

Chemical shrinkage (CS) is the reason behind early age cracking, a common problem for concrete with low water to cement ratios (w/c < 0.35) known as Ultra-High- and High-Performance Concrete (U-HPC). However, to avoid the crack development initiated by autogenous shrinkage, a precise measurement of CS is required, as the values obtained can determine the correct amount of internal curing agent to be added in the mixture to avoid crack formation. ASTM C1608 is the standardized method for performing CS tests. In this study, recommendations are provided to improve the reliability of results obtained with this standard method, such as good compaction of samples and the use of superplasticizer (SP) for low w/c ratios (≤0.2). Cement pastes with CEM I and CEM III have been tested at different w/c ratios equal to 0.2, 0.3 and 0.4 with and without the addition of superplasticizer. CS results following ASTM-C1608 dilatometry showed that the presence of mineral additions such as silica fume and filler reduced the chemical shrinkage, while CS increased with increasing w/c. Low w/c ratio pastes of CEM III had slightly higher CS rates than CEM I, while the opposite was noticed at higher w/c. SEM images illustrated the importance of a careful compaction and SP use.

8.
Sensors (Basel) ; 21(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918247

ABSTRACT

The mitigation of autogenous shrinkage in cementitious materials by internal curing has been widely studied. By the inclusion of water reservoirs, in form of saturated lightweight aggregates or superabsorbent polymers, additional water is provided to the hydrating matrix. The onset of water release is of high importance and determines the efficiency of the internal curing mechanism. However, the monitoring of it poses problems as it is a process that takes place in the microstructure. Using acoustic emission (AE) sensors, the internal curing process is monitored, revealing its initiation and intensity, as well as the duration. In addition, AE is able to capture the water evaporation from saturated specimens. By ultrasonic testing, differences in the hydration kinetics are observed imposed by the different methods of internal curing. The results presented in this paper show the sensitivity of combined AE and ultrasound experiments to various fundamental mechanisms taking place inside cementitious materials and demonstrate the ability of acoustic emission to evaluate internal curing in a non-destructive and easily implementable way.

9.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213026

ABSTRACT

Superabsorbent polymers (SAPs) are known to mitigate the development of autogenous shrinkage in cementitious mixtures with a low water-to-cement ratio. Moreover, the addition of SAPs promotes the self-healing ability of cracks. A drawback of using SAPs lies in the formation of macropores when the polymers release their absorbed water, leading to a reduction of the mechanical properties. Therefore, a supplementary material was introduced together with SAPs, being nanosilica, in order to obtain an identical compressive strength with respect to the reference material without additives. The exact cause of the similar compressive behaviour lies in the modification of the hydration process and subsequent microstructural development by both SAPs and nanosilica. Within the present study, the effect of SAPs and nanosilica on the hydration progress and the hardened properties is assessed. By means of isothermal calorimetry, the hydration kinetics were monitored. Subsequently, the quantity of hydration products formed was determined by thermogravimetric analysis and scanning electron microscopy, revealing an increased amount of hydrates for both SAP and nanosilica blends. An assessment of the pore size distribution was made using mercury intrusion porosimetry and demonstrated the increased porosity for SAP mixtures. A correlation between microstructure and the compressive strength displayed its influence on the mechanical behaviour.

10.
Sci Technol Adv Mater ; 21(1): 661-682, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-33061839

ABSTRACT

Development and commercialization of self-healing concrete is hampered due to a lack of standardized test methods. Six inter-laboratory testing programs are being executed by the EU COST action SARCOS, each focusing on test methods for a specific self-healing technique. This paper reports on the comparison of tests for mortar and concrete specimens with polyurethane encapsulated in glass macrocapsules. First, the pre-cracking method was analysed: mortar specimens were cracked in a three-point bending test followed by an active crack width control technique to restrain the crack width up to a predefined value, while the concrete specimens were cracked in a three-point bending setup with a displacement-controlled loading system. Microscopic measurements showed that with the application of the active control technique almost all crack widths were within a narrow predefined range. Conversely, for the concrete specimens the variation on the crack width was higher. After pre-cracking, the self-healing effect was characterized via durability tests: the mortar specimens were tested in a water permeability test and the spread of the healing agent on the crack surfaces was determined, while the concrete specimens were subjected to two capillary water absorption tests, executed with a different type of waterproofing applied on the zone around the crack. The quality of the waterproofing was found to be important, as different results were obtained in each absorption test. For the permeability test, 4 out of 6 labs obtained a comparable flow rate for the reference specimens, yet all 6 labs obtained comparable sealing efficiencies, highlighting the potential for further standardization.

11.
Materials (Basel) ; 13(11)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498382

ABSTRACT

Production of artificial lightweight aggregate (LWA) from industrial by-products or abundant volcanic mud is a promising solution to prevent damaging the environment due to the mining of natural aggregate. However, improvements are still needed in order to control the high water absorption of LWA and strength reduction in resulting concrete or mortar. Hence in this research, fly ash, municipal solid waste incineration bottom ash (MSWI BA), and Sidoarjo volcanic mud (Lusi) were employed as a precursor and activated using NaOH 6 M and Na2SiO3 in producing LWA. The influence of the type of the precursors on the physical properties of resulting LWA was investigated. The effect of replacing natural fine aggregate with the resulting LWA on the compressive strength and volume density of mortar was also determined. Finer particles, a high amount of amorphous phase, and low loss on ignition (LOI) of the raw material improved the properties of resulting LWA. Mortar compressive strength was decreased by 6% when replacing 16% by volume of natural fine aggregate with fly ash based LWA. Compared to the expanded clay LWA, the properties of alternative LWAs in this study were slightly, but not significantly, inferior. Alternative LWA becomes attractive when considering that expanded clay LWA requires more energy during the sintering process.

12.
Sensors (Basel) ; 20(10)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456153

ABSTRACT

To mitigate autogenous shrinkage in cementitious materials and simultaneously preserve the material's mechanical performance, superabsorbent polymers and nanosilica are included in the mixture design. The use of the specific additives influences both the hydration process and the hardened microstructure, while autogenous healing of cracks can be stimulated. These three stages are monitored by means of non-destructive testing, showing the sensitivity of elastic waves to the occurring phenomena. Whereas the action of the superabsorbent polymers was evidenced by acoustic emission, the use of ultrasound revealed the differences in the developed microstructure and the self-healing of cracks by a comparison with more commonly performed mechanical tests. The ability of NDT to determine these various features renders it a promising measuring method for future characterization of innovative cementitious materials.

13.
Materials (Basel) ; 13(6)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245156

ABSTRACT

The corrosion by severe sulfuric acid attack at pH 2 of two self-compacting concrete (SCC) types that are based on ordinary Portland cement (OPC) and granulometrically optimized blast-furnace slag cement was evaluated by three complementary tests that were performed in different research institutes. The use of SCC is a smart and promising solution to improve the performance of concrete in an aggressive environment, especially regarding ready-mixed concrete applications, since good compaction is less dependent on workmanship. The relevance and practical advantages of the different test protocols and the influence of the experimental parameters are discussed. It appears that the frequency of renewing the acid solution during the exposure period is the main parameter that influences the mass loss and the rate of degradation, while the sample geometry and the ratio between the volume of solution and concrete surface area had no clear influence. Nevertheless, there was reasonable agreement between the methods regarding the magnitude of the concrete degradation (resulting in a mass loss of about 2.5 kg/m² in six months time). The use of granulometrically optimized slag cement provided a moderate increase of the concrete resistance against acid attack, and this practice might be recommended in order to increase the durability of structures exposed to sulfuric acid media. The fact that the difference in comparison with SCC-OPC was rather limited shows that the influence of the cement type becomes less relevant in the case of concrete with low w/c ratio and optimized concrete technology.

14.
Materials (Basel) ; 13(4)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102197

ABSTRACT

Due to the negative impact of construction processes on the environment and a decrease in investments, there is a need for concrete structures to operate longer while maintaining their high performance. Self-healing concrete has the ability to heal itself when it is cracked, thereby protecting the interior matrix as well as the reinforcement steel, resulting in an increased service life. Most research has focused on mortar specimens at lab-scale. Yet, to demonstrate the feasibility of applying self-healing concrete in practice, demonstrators of large-scale applications are necessary. A roof slab of an inspection pit was cast with bacterial self-healing concrete and is now in normal operation. As a bacterial additive to the concrete, a mixture called MUC+, made out of a Mixed Ureolytic Culture together with anaerobic granular bacteria, was added to the concrete during mixing. This article reports on the tests carried out on laboratory control specimens made from the same concrete batch, as well as the findings of an inspection of the roof slab under operating conditions. Lab tests showed that cracks at the bottom of specimens and subjected to wet/dry cycles had the best visual crack closure. Additionally, the sealing efficiency of cracked specimens submersed for 27 weeks in water, measured by means of a water permeability setup, was at least equal to 90%, with an efficiency of at least 98.5% for the largest part of the specimens. An inspection of the roof slab showed no signs of cracking, yet favorable conditions for healing were observed. So, despite the high healing potential that was recorded during lab experiments, an assessment under real-life conditions was not yet possible.

15.
Materials (Basel) ; 13(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947606

ABSTRACT

Addition of superabsorbent polymers (SAPs) to cementitious mixtures promotes the self-healing ability of the material. When cracking occurs; SAPs present inside the crack will swell upon contact with water and subsequently release this water to stimulate the further hydration of unhydrated cement particles and the calcium carbonate crystallization. However; the inclusion of SAPs affects the mechanical performance of the cementitious material by the creation of macro-pores as water is retracted from the swollen SAP. To counteract the reduction in strength, part of the cement is replaced by nanosilica. In this research, different mixtures containing either SAPs or nanosilica and a combination of both were made. The samples were subjected to wet-dry cycles simulating external conditions, and the self-healing efficiency was evaluated by means of the evolution in crack width, by optical measurements, and a water permeability test. In samples containing SAPs, an immediate sealing effect was observed and visual crack closure was noticed. The smaller influence on the mechanical properties and the good healing characteristics in mixtures containing both nanosilica and SAPs are promising as a future material for use in building applications.

16.
Appl Microbiol Biotechnol ; 103(21-22): 8825-8838, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31637492

ABSTRACT

Microbial-induced CaCO3 precipitation has been widely applied in bacterial-based self-healing concrete. However, the limited biogenetic CaCO3 production by bacteria after they were introduced into the incompatible concrete matrix is a major challenge of this technology. In the present study, the potential of combining two metabolic pathways, urea hydrolysis and nitrate reduction, simultaneously in one bacteria strain for improving the bacterial CaCO3 yield has been investigated. One bacterial strain, Ralstonia eutropha H16, which has the highest Ca2+ tolerance and is capable of performing both urea hydrolysis and nitrate reduction in combined media was selected among three bacterial candidates based on the enzymatic examinations. Results showed that H16 does not need oxygen for urea hydrolysis and urease activity was determined primarily by cell concentration. However, the additional urea in the combined medium slowed down the nitrate reduction rate to 7 days until full NO3- decomposition. Moreover, the nitrate reduction of H16 was significantly restricted by an increased Ca2+ ion concentration in the media. Nevertheless, the overall CaCO3 precipitation yield can be improved by 20 to 30% after optimization through the combination of two metabolic pathways. The highest total CaCO3 precipitation yield achieved in an orthogonal experiment was 14 g/L. It can be concluded that Ralstonia eutropha H16 is a suitable bacterium for simultaneous activation of urea hydrolysis and nitrate reduction for improving the CaCO3 precipitation and it can be studied later, on activation of multiple metabolic pathways in bacteria-based self-healing concrete.


Subject(s)
Calcium Carbonate/metabolism , Cupriavidus necator/metabolism , Nitrates/metabolism , Urea/metabolism , Chemical Precipitation , Construction Materials/microbiology , Cupriavidus necator/enzymology , Hydrolysis
17.
Materials (Basel) ; 12(18)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547313

ABSTRACT

Many studies have already been published concerning autogenous shrinkage in cementitious materials. Still, no consensus can be found in the literature regarding the determination of the time-zero to initiate the recording of autogenous shrinkage. With internal curing agents, a correct evaluation of their efficiency depends on an appropriate choice of the time-zero. This study investigates different approaches to estimate the time-zero for cement paste mixtures with and without superabsorbent polymers as internal curing agents. The initial and final setting times were determined by an electronic Vicat and ultrasonic pulse velocity measurements (UPV); the transition point between the fluid and solid state was determined from the autogenous strain curve; the development of the capillary pressure was also studied. The choice of time-zero before the transition point led to higher values of shrinkage strain that should not be taken into account for autogenous shrinkage. A negligible difference was found between the strains when the final setting time and the transition point were taken as time-zero. Considering the artefacts and practical issues involving the different methods, the use of the transition point from the autogenous strain curve is the most suitable technique for determining the time-zero.

18.
Materials (Basel) ; 12(9)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083408

ABSTRACT

Superabsorbent polymers (SAPs) can be added to a concrete mixture to provide internal curing and reduce the risk for early-age shrinkage cracking. Hence, they can help to increase the overall durability of concrete structures. The type, swelling characteristics, kinetics of water release, amount and particle size of the SAPs will dictate their effectiveness for this purpose. In this paper, SAPs with different cross-linking degrees, particle sizes and amount of solubles are investigated. By varying these parameters, insight can be gained on the influence of each of these parameters on SAP properties such as the swelling capacity. In a next step, the SAPs can be implemented in mortar to assess their influence on mortar properties like workability, compressive strength or hydration kinetics. Based on these results, the 'ideal' SAP with tunable properties for a specific concrete application can be selected. For this purpose, an anionic SAP was synthesized with varying amounts of cross-linker and ground to particle sizes with d50 varying between 10 and 100 µm. The swelling capacity in demineralised water of 40 µm SAP particles increased with a decreasing degree of cross-linker from 66 g/g SAP with 1 mol% cross-linker to 270 g/g SAP in case of 0.15 mol% cross-linker, and was about three to four times larger than the swelling capacity in the prepared cement filtrate. The SAPs were tested for their effect on mortar workability, cement hydration kinetics and mechanical properties of the hardened mortar. With proper compensation for the absorbed water by the SAPs, the mortar workability was not negatively affected and the reduction in flow over the first two hours remained limited. The SAPs with the lowest swelling capacity, resulting in the smallest total amount of macro pores formed, showed the smallest negative effect on mortar compressive strength (a reduction of 23% compared to the reference after 28 days for an addition of 0.5 m% SAP) and a negligible effect on cement hydration. The difference in strength with the reference decreased as a function of mortar age. When using SAPs with particle sizes in the range of 10-100 µm, no significant differences between the studied particle sizes were found concerning the mortar properties. With the ease of upscaling in mind, the need to purify the SAPs and to remove the non-cross-linked soluble fraction was further investigated. It was shown that the solubles had no effect on the mortar properties, except for increasing the setting time with almost 100%.

19.
R Soc Open Sci ; 6(1): 181665, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30800397

ABSTRACT

Today, a rather poor carbonation resistance is being reported for high-volume fly ash (HVFA) binder systems. This conclusion is usually drawn from accelerated carbonation experiments conducted at CO2 levels that highly exceed the natural atmospheric CO2 concentration of 0.03-0.04%. However, such accelerated test conditions may change the chemistry of the carbonation reaction (and the resulting amount of CH and C-S-H carbonation), the nature of the mineralogical phases formed (stable calcite versus metastable vaterite, aragonite) and the resulting porosity and pore size distribution of the microstructure after carbonation. In this paper, these phenomena were studied on HVFA and fly ash + silica fume (FA + SF) pastes after exposure to 0.03-0.04%, 1% and 10% CO2 using thermogravimetric analysis, quantitative X-ray diffraction and mercury intrusion porosimetry. It was found that none of these techniques unambiguously revealed the reason for significantly underestimating carbonation rates at 1% CO2 from colorimetric carbonation test results obtained after exposure to 10% CO2 that were implemented in a conversion formula that solely accounts for the differences in CO2 concentration. Possibly, excess water production due to carbonation at too high CO2 levels with a pore blocking effect and a diminished solubility for CO2 plays an important role in this.

20.
Materials (Basel) ; 12(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30577620

ABSTRACT

This research aimed to prove the feasibility of producing two types of precast elements widely used in construction, such as curbstones and paving blocks, using recycled concrete made with a 50% substitution of the natural gravel by recycled mixed aggregates with a significant ceramic content (>30%). In order to prove the quality of such mass concrete recycled precast elements, two different mixes were used: the first one was a conventional concrete mix provided by Prefabricados de Hormigón Pavimentos Páramo S.L., one of the collaborating companies in this study, and the other was a mixture in which wt 50% of the natural coarse aggregates were substituted for recycled mixed aggregates ceramic (RMAc). This recycled aggregate is a heterogeneous mixture of unbound aggregates, concrete, ceramic, etc., used as a secondary recycled aggregate and commonly produced in a lot of recycling plants in many European countries. This material was supplied by Tecnología y Reciclado S.L., the other collaborating company. Both mixtures were representative in order to establish the comparative behavior between them, taking into account that smaller percentages of replacement of the natural with recycled aggregates will also produce good results. This percentage of substitution represents a high saving of natural resources (gravel) and maintains a balanced behavior of the recycled concrete, so this new material can be considered to be a viable and reliable option for precast mass concrete paving elements. The characterization of the recycled precast elements, covering mechanical, microstructural, and durability properties, showed mostly similar behavior when compared to the analogous industrially-produced pieces made with conventional concrete.

SELECTION OF CITATIONS
SEARCH DETAIL
...