Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927525

ABSTRACT

Oral squamous-cell and pancreatic carcinomas are aggressive cancers with a poor outcome. Photodynamic therapy (PDT) consists of the use of photosensitizer-induced cell and tissue damage that is activated by exposure to visible light. PDT selectively acts on cancer cells, which have an accumulation of photosensitizer superior to that of the normal surrounding tissues. 5-aminolevulinic acid (5-ALA) induces the production of protoporphyrin IX (PpIX), an endogenous photosensitizer activated in PDT. This study aimed to test the effect of a new gel containing 5% v/v 5-ALA (ALAD-PDT) on human oral CAL-27 and pancreatic CAPAN-2 cancer cell lines. The cell lines were incubated in low concentrations of ALAD-PDT (0.05%, 0.10%, 0.20%, 0.40%, 0.75%, 1.0%) for 4 h or 8 h, and then irradiated for 7 min with 630 nm RED light. The cytotoxic effects of ALAD-PDT were measured using the MTS assay. Apoptosis, cell cycle, and ROS assays were performed using flow cytometry. PpIX accumulation was measured using a spectrofluorometer after 10 min and 24 and 48 h of treatment. The viability was extremely reduced at all concentrations, at 4 h for CAPAN-2 and at 8 h for CAL-27. ALAD-PDT induced marked apoptosis rates in both oral and pancreatic cancer cells. Elevated ROS production and appreciable levels of PpIX were detected in both cell lines. The use of ALA-PDT as a topical or intralesional therapy would permit the use of very low doses to achieve effective results and minimize side effects. ALAD-PDT has the potential to play a significant role in complex oral and pancreatic anticancer therapies.

2.
Cancers (Basel) ; 15(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36831396

ABSTRACT

Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting of proteins, lipids, mRNAs, miRNAs, and DNA fragments) to target cells, crossing biological barriers. Those mechanisms further trigger a wide range of biological responses. Interestingly, EV phenotypes and cargoes and, therefore, their functions, stem from their specific parental cells. For these reasons, EVs have been proposed as promising candidates for EV-based, cell-free therapies. One of the new frontiers of cell-based immunotherapy for the fight against refractory neoplastic diseases is represented by genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes, which in recent years have demonstrated their effectiveness by reaching commercialization and clinical application for some neoplastic diseases. CAR-T-derived EVs represent a recent promising development of CAR-T immunotherapy approaches. This crosscutting innovative strategy is designed to exploit the advantages of genetically engineered cell-based immunotherapy together with those of cell-free EVs, which in principle might be safer and more efficient in crossing biological and tumor-associated barriers. In this review, we underlined the potential of CAR-T-derived EVs as therapeutic agents in tumors.

3.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498922

ABSTRACT

Allergic reactions to COVID-19 vaccine components are rare but should be considered. Polyethylene glycol (PEG) is responsible for anaphylaxis in mRNA vaccines. Skin tests have been used in the allergological work-up programs for COVID-19 vaccine evaluation. However, the reproducibility of the skin prick test is time-dependent and the reactivity declines over time. Therefore, we combined the administration of the skin tests with the basophil activation test (BAT) using PEG2000, PEG4000 and DMG-PEG2000, where the BAT was considered positive when the percentage of activated basophils was higher than 6%, 5% and 6.5%, for PEG 4000, PEG2000 and DMG-PEG2000, respectively. To this end, among the subjects that underwent allergy counseling at the Allergy Unit of our Institution during the 2020/2021 vaccination campaign, 13 patients had a suggested medical history of PEG/drug hypersensitivity and were enrolled together with 10 healthy donors. Among the enrolled patients 2 out of 13 tested patients were positive to the skin test. The BAT was negative in terms of the percentages of activated basophils in all analyzed samples, but the stimulation index (SI) was higher than 2.5 in 4 out of 13 patients. These data evidenced that, when the SI is higher than 2.5, even in the absence of positivity to BAT, the BAT to PEG may be a useful tool to be coupled to skin tests to evidence even low-grade reactions.


Subject(s)
Anaphylaxis , COVID-19 , Hypersensitivity , Humans , Basophil Degranulation Test , COVID-19 Vaccines , Reproducibility of Results , Basophils , Hypersensitivity/diagnosis , Skin Tests , Polyethylene Glycols/adverse effects
4.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499243

ABSTRACT

Platelet-rich plasma (PRP) has great potential in regenerative medicine. In addition to the well-known regenerative potential of secreted growth factors, extracellular vesicles (EVs) are emerging as potential key players in the regulation of tissue repair. However, little is known about their therapeutic potential as regenerative agents. In this study, we have identified and subtyped circulating EVs (platelet-, endothelial-, and leukocyte-derived EVs) in the peripheral blood of athletes recovering from recent muscular injuries and undergoing a submaximal strength rehabilitation program. We found a significant increase in circulating platelet-derived EVs at the end of the rehabilitation program. Moreover, EVs from PRP samples were isolated by fluorescence-activated cell sorting and analyzed by label-free proteomics. The proteomic analysis of PRP-EVs revealed that 32% of the identified proteins were associated to "defense and immunity", and altogether these proteins were involved in vesicle-mediated transport (GO: 0016192; FDR = 3.132 × 10-19), as well as in wound healing (GO: 0042060; FDR = 4.252 × 10-13) and in the events regulating such a process (GO: 0061041; FDR = 2.812 × 10-12). Altogether, these data suggest that platelet-derived EVs may significantly contribute to the regeneration potential of PRP preparations.


Subject(s)
Extracellular Vesicles , Muscular Diseases , Humans , Proteomics , Extracellular Vesicles/metabolism , Regenerative Medicine , Muscular Diseases/metabolism , Athletes , Muscles
5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499420

ABSTRACT

Brettanomyces bruxellensis is found in several fermented matrices and produces relevant alterations to the wine quality. The methods usually used to identify B. bruxellensis contamination are based on conventional microbiological techniques that require long procedures (15 days), causing the yeast to spread in the meantime. Recently, a flow cytometry kit for the rapid detection (1-2 h) of B. bruxellensis in wine has been developed. The feasibility of the method was assessed in a synthetic medium as well as in wine samples by detecting B. bruxellensis in the presence of other yeast species (Saccharomyces cerevisiae and Pichia spp.) and at the concentrations that produce natural contaminations (up to 105 cells/mL), as well as at lower concentrations (103-102 cells/mL). Wine samples naturally contaminated by B. bruxellensis or inoculated with four different strains of B. bruxellensis species together with Saccharomyces cerevisiae and Pichia spp., were analyzed by flow cytometry. Plate counts were carried out in parallel to flow cytometry. We provide evidence that flow cytometry allows the rapid detection of B. bruxellensis in simple and complex mixtures. Therefore, this technique has great potential for the detection of B. bruxellensis and could allow preventive actions to reduce wine spoilage.


Subject(s)
Brettanomyces , Wine , Saccharomyces cerevisiae , Flow Cytometry , Food Microbiology , Wine/analysis
6.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36430575

ABSTRACT

Extracellular Vesicles (EVs) are circulating particles surrounded by a plasma membrane carrying a cargo consisting of proteins, lipids, RNAs, and DNA fragments, stemming from the cells from which they originated. EV factors (i.e., miRNAs) play relevant roles in intercellular crosstalk, both locally and systemically. As EVs increasingly gained attention as potential carriers for targeted genes, the study of EV effects on the host immune response became more relevant. It has been demonstrated that EVs regulate the host immune response, executing both pro- and anti-inflammatory functions. It is also known that physical exercise triggers anti-inflammatory effects. This review underlines the role of circulating EVs as players in the anti-inflammatory events associated with the regulation of the host's immune response to physical exercise.


Subject(s)
Extracellular Vesicles , MicroRNAs , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Anti-Inflammatory Agents/pharmacology , Cell Communication , Exercise
7.
Cancers (Basel) ; 14(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36230671

ABSTRACT

Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide. Identification of novel tumor biomarkers is highly advocated in PC to optimize personalized treatment algorithms. Blood-circulating extracellular vesicles hold promise for liquid biopsy application in cancer. We used an optimized flow cytometry protocol to study leukocyte-derived EVs (CD45+) and PD-L1+ EVs in blood from 56 pancreatic cancer patients and 48 healthy controls (HCs). Our results show that PC patients presented higher blood levels of total EVs (p = 0.0003), leukocyte-derived EVs (LEVs) (p = 0.001) and PD-L1+ EVs (p = 0.01), as compared with HCs. Interestingly, a blood concentration of LEVs at baseline was independently associated with improved overall survival in patients with borderline resectable or primary unresectable PC (HR = 0.17; 95% CI 0.04-0.79; p = 0.02). Additionally, increased blood-based LEVs were independently correlated with prolonged progression-free survival (HR = 0.10; 95% CI 0.01-0.82; p = 0.03) and significantly associated with higher disease control rate (p = 0.02) in patients with advanced PC receiving standard chemotherapy. Notably, a strong correlation between a decrease in blood LEVs concentration during chemotherapy and disease control was observed (p = 0.005). These intriguing findings point to the potential of LEVs as novel blood-based EV biomarkers for improved personalized medicine in patients affected by PC.

8.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012246

ABSTRACT

Recently, the protective and/or pathological role of virus-specific T cells in SARS-CoV-2 infection has been the focus of many studies. We investigated the anti-spike IgG levels and SARS-CoV-2-specific T cells in 125 donors (90 vaccinated with four different vaccine platforms, 16 individuals with a previous natural infection, and 19 not vaccinated donors who did not report previous SARS-CoV-2 infections). Our data show that anti-spike IgG titers were similar between naturally infected subjects and those vaccinated with adenoviral vector vaccines. Of note, all immunized donors produced memory CD4+ and/or CD8+ T cells. A sustained polyfunctionality of SARS-CoV-2-specific T cells in all immunized donors was also demonstrated. Altogether, our data suggest that the natural infection produces an overall response like that induced by vaccination. Therefore, this detailed immunological evaluation may be relevant for other vaccine efforts especially for the monitoring of novel vaccines effective against emerging virus variants.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccination
9.
Vaccines (Basel) ; 10(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35455263

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a major global public health crisis. In response, researchers and pharmaceutical companies worked together for the rapid development of vaccines to reduce the morbidity and mortality associated with viral infection. Monitoring host immunity following virus infection and/or vaccination is essential to guide vaccination intervention policy. Humoral immune response to vaccination can be assessed with serologic testing, and indeed, many serological immunoassays are now in use. However, these many different assays make the standardization of test results difficult. Moreover, most published serological tests require venous blood sampling, which makes testing large numbers of people complex and costly. Here, we validate the GSP®/DELFIA® Anti-SARS-CoV-2 IgG kit using dried blood samples for high-throughput serosurveillance using standard quantitative measurements of anti-spike S1 IgG antibody concentrations. We then apply our validated assay to compare post-vaccination anti-SARS-CoV-2 S1 IgG levels from subjects who received a double dose of the AZD1222 vaccine with those vaccinated with a heterologous strategy, demonstrating how this assay is suitable for large-scale screening to achieve a clearer population immune picture.

10.
Curr Issues Mol Biol ; 45(1): 164-174, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36661499

ABSTRACT

The use of anthracycline derivatives was approved for the treatment of a broad spectrum of human tumors (i.e., breast cancer). The need to test these drugs on cancer models has pushed the basic research to apply many types of in vitro assays, and, among them, the study of anthracycline-induced apoptosis was mainly based on the application of flow cytometry protocols. However, the chemical structure of anthracycline derivatives gives them a strong autofluorescence effect that must be considered when flow cytometry is used. Unfortunately, the guidelines on the analysis of anthracycline effects through flow cytometry are lacking. Therefore, in this study, we optimized the flow cytometry detection of doxorubicin and epirubicin-treated breast cancer cells. Their autofluorescence was assessed both by using conventional and imaging flow cytometry; we found that all the channels excited by the 488 nm laser were affected. Anthracycline-induced apoptosis was then measured via flow cytometry using the optimized setting. Consequently, we established a set of recommendations that enable the development of optimized flow cytometry settings when the in vitro assays of anthracycline effects are analyzed, with the final aim to reveal a new perspective on the use of those in vitro tests for the further implementation of precision medicine strategies in cancer.

11.
Nutrients ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36615729

ABSTRACT

Extracellular vesicles (EVs) are a class of circulating entities that are involved in intercellular crosstalk mechanisms, participating in homeostasis maintenance, and diseases. Celiac disease is a gluten-triggered immune-mediated disorder, characterized by the inflammatory insult of the enteric mucosa following local lymphocytic infiltration, resulting in villous atrophy. The goal of this research was the assessment and characterization of circulating EVs in celiac disease patients, as well as in patients already on an adequate gluten-free regimen (GFD). For this purpose, a novel and validated technique based on polychromatic flow cytometry that allowed the identification and enumeration of different EV sub-phenotypes was applied. The analysis evidenced that the total, annexin V+, leukocyte (CD45+), and platelet (CD41a+) EV counts were significantly higher in both newly diagnosed celiac disease patients and patients under GFD compared with the healthy controls. Endothelial-derived (CD31+) and epithelial-derived (EpCAM+) EV counts were significantly lower in subjects under gluten exclusion than in celiac disease patients, although EpCAM+ EVs maintained higher counts than healthy subjects. The numbers of EpCAM+ EVs were a statistically significant predictor of intraepithelial leukocytes (IEL). These data demonstrate that EVs could represent novel and potentially powerful disease-specific biomarkers in the context of celiac disease.


Subject(s)
Celiac Disease , Extracellular Vesicles , Humans , Celiac Disease/diagnosis , Epithelial Cell Adhesion Molecule , Glutens , Intestine, Small , Diet, Gluten-Free
12.
Article in English | MEDLINE | ID: mdl-34886515

ABSTRACT

As is well known, the COVID-19 infection is affecting the whole world, causing a serious health, social and economic crisis. The viral infection can cause a mild or severe illness, depending on how effectively the virus is countered by the immune system. In this context, the position of pregnant women remains rather unknown. The case described here reports the immune response in a woman in good health and in her newborn son, having undergone complete vaccination during the first trimester of her pregnancy. We performed a serological assay, measuring IgG antibodies to SARS-CoV-2, by a fully automated solid phase DELFIA (time-resolved fluorescence) immunoassay in a few drops of blood, collected by a finger-prick and spotted on filter paper. The dried blood spot (DBS) sample we used is the same type of sample routinely used in a newborn screening program test. Such a simple and minimally invasive approach allowed us to monitor both the mother and the newborn soon after birth for their anti-SARS-CoV-2 IgG levels. The serological test on the DBS carried out on both mother and newborn revealed the presence of anti-SARS-CoV-2 IgG antibodies up to 7 months after vaccination in the mother, and already at 48 h of life in the newborn.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Female , Humans , Infant, Newborn , Parturition , Pregnancy , Pregnancy Trimester, First , Vaccination
13.
Vaccines (Basel) ; 9(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34696272

ABSTRACT

The efficacy of SARS-CoV-2 mRNA-based vaccines in preventing COVID-19 disease has been extensively demonstrated; however, it is of uttermost importance to acquire knowledge on the persistence of immune-protection both in terms of levels of neutralizing antibodies and specialized memory cells. This can provide important scientific basis for decisions on the need of additional vaccine doses and on when these should be administered thus resulting in an improvement in vaccination schedules. Here, we briefly report the changes in antibody levels and cellular immunity following BNT162b2 administration. We show an important fall in anti S1-Spike antibodies in BNT162b2 vaccinated subjects overtime, paralleled by a contextual consolidation of specific spike (S) T-cells, mainly of the CD8+ compartment. Contrariwise, CD4+ S-specific response shows a considerable interindividual variability. These data suggest that the well-known antibody drop in vaccinated subjects is replaced by memory cell consolidation that can protect from severe adverse effects of SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...