Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 128(19): 3646-59, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26303201

ABSTRACT

Pmp3p-related proteins are highly conserved proteins that exist in bacteria, yeast, nematodes and plants, and its transcript is regulated in response to abiotic stresses, such as low temperature or high salinity. Pmp3p was originally identified in Saccharomyces cerevisiae, and it belongs to the sensitive to Na(+) (SNA)-protein family, which comprises four members--Pmp3p/Sna1p, Sna2p, Sna3p and Sna4p. Deletion of the PMP3 gene conferred sensitivity to cytotoxic cations, whereas removal of the other SNA genes did not lead to clear phenotypic effects. It has long been believed that Pmp3p-related proteins have a common and important role in the modulation of plasma membrane potential and in the regulation of intracellular ion homeostasis. Here, we show that several growth phenotypes linked to PMP3 deletion can be modulated by the removal of specific genes involved in sphingolipid synthesis. These genetic interactions, together with lipid binding assays and epifluorescence microscopy, as well as other biochemical experiments, suggest that Pmp3p could be part of a phosphoinositide-regulated stress sensor.


Subject(s)
Saccharomyces cerevisiae/metabolism , Cell Membrane/metabolism , Gene Expression Regulation, Fungal , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sphingolipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...