Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(18): 187701, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196239

ABSTRACT

We report the observation of an intriguing behavior in the transport properties of nanodevices operating in a regime between the Fabry-Pérot and the Kondo limits. Using ultrahigh quality nanotube devices, we study how the conductance oscillates when sweeping the gate voltage. Surprisingly, we observe a fourfold enhancement of the oscillation period upon decreasing temperature, signaling a crossover from single-electron tunneling to Fabry-Pérot interference. These results suggest that the Fabry-Pérot interference occurs in a regime where electrons are correlated. The link between the measured correlated Fabry-Pérot oscillations and the SU(4) Kondo effect is discussed.

2.
Nano Lett ; 18(8): 5324-5328, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30062893

ABSTRACT

Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultralight resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultrasensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate electrode down to ∼150 nm. These advances in detection and fabrication allow us to reach [Formula: see text] displacement sensitivity. Thermal vibrations cooled cryogenically at 300 mK are detected with a signal-to-noise ratio as high as 17 dB. We demonstrate [Formula: see text] force sensitivity, which is the best force sensitivity achieved thus far with a mechanical resonator. Our work is an important step toward imaging individual nuclear spins and studying the coupling between mechanical vibrations and electrons in different quantum electron transport regimes.

3.
Environ Pollut ; 216: 786-792, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27376992

ABSTRACT

Low tech photovoltaic panels (PVPs) installed in the early '80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high.


Subject(s)
Electronic Waste/adverse effects , Solar Energy , Water Pollutants, Chemical/chemistry , Animals , Artemia/drug effects , Biological Assay/methods , Cucumis sativus/drug effects , Daphnia/drug effects , Germination/drug effects , Lens Plant/drug effects , Paracentrotus/drug effects , Refuse Disposal/methods , Toxicity Tests , Water Pollutants, Chemical/toxicity
4.
Structure ; 7(11): 1407-16, 1999 Nov 15.
Article in English | MEDLINE | ID: mdl-10574799

ABSTRACT

BACKGROUND: The kinesin superfamily of microtubule-associated motor proteins are important for intracellular transport and for cell division in eukaryotes. Conventional kinesins have the motor domain at the N terminus of the heavy chain and move towards the plus end of microtubules. The ncd protein is necessary for chromosome segregation in meiosis. It belongs to a subfamily of kinesins that have the motor domain at the C terminus and move towards the minus end of microtubules. RESULTS: The crystal structure of dimeric ncd has been obtained at 2.9 A resolution from crystals with the C222(1) space group, with two independent dimers per asymmetric unit. The motor domains in these dimers are not related by crystallographic symmetry and the two ncd dimers have significantly different conformations. An alpha-helical coiled coil connects, and interacts with, the motor domains. CONCLUSIONS: The ncd protein has a very compact structure, largely due to extended interactions of the coiled coil with the head domains. Despite this, we find that the overall conformation of the ncd dimer can be rotated by as much as 10 degrees away from that of the twofold-symmetric archetypal ncd. The crystal structures of conventional kinesin and of ncd suggest a structural rationale for the reversal of the direction of movement in chimeric kinesins.


Subject(s)
Drosophila Proteins , Kinesins/chemistry , Adenosine Diphosphate/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Crystallography, X-Ray , Dimerization , Kinesins/metabolism , Molecular Sequence Data , Protein Conformation
5.
J Biol Chem ; 270(14): 8345-52, 1995 Apr 07.
Article in English | MEDLINE | ID: mdl-7713943

ABSTRACT

The structure-activity relationship of casein kinase 2 (CK2) was examined with regard to its previously reported property to self-aggregate in vitro. Sedimentation velocity and electron microscopy studies showed that the purified kinase exhibited four major, different oligomeric forms in aqueous solution. This self-polymerization was a reproducible and fully reversible process, highly dependent upon the ionic strength of the medium, suggesting that electrostatic interactions are mostly involved. At high salt concentrations (e.g. 0.5 M NaCl), CK2 appears as spherical moieties with a 18.7 +/- 1.6 nm average diameter, roughly corresponding to the alpha 2 beta 2 protomer, as deduced by measurements of the Stokes radius and by light scattering studies. At lower ionic strength (e.g. 0.2 M NaCl), the protomers associate to form ring-like structures with a diameter (averaging 36.6 +/- 2.1 nm) and Stokes radius indicating that they are most likely made of four circularly associated alpha 2 beta 2 protomers. At 0.1 M NaCl, two additional polymeric structures were visualized: thin filaments (16.4 +/- 1.4 nm average), as long as 1 to 5 microns, and thick and shorter filaments (28.5 +/- 1.6 nm average). Examination of the molecular organization of CK2 under different catalytic conditions revealed that the ring-like structure is the favored conformation adopted by the enzyme in the presence of saturating concentrations of substrates and cofactors. During catalysis, well-known cofactors like MgCl2 or spermine are the main factors governing the stabilization of the active ring-like structure. On the other hand, inhibitory high salt concentrations promote the dissociation of the active ring-like structure into protomers. Such observations suggest a strong correlation between the ring-like conformation of the enzyme and optimal specific activity. Thus, CK2 may be considered as an associating-dissociating enzyme, and this remarkable property supports the hypothesis of a cooperative and allosteric regulation of the kinase in response to appropriate regulatory ligands possibly taking place in intact cells.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Amino Acid Sequence , Animals , Biopolymers , Casein Kinase II , Catalysis , Cloning, Molecular , Drosophila melanogaster , Magnesium Chloride/pharmacology , Microscopy, Electron , Molecular Sequence Data , Osmolar Concentration , Protein Conformation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/ultrastructure , Sodium Chloride , Solutions , Spermine/pharmacology , Structure-Activity Relationship , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...