Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Aging Mech Dis ; 7(1): 14, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34210964

ABSTRACT

To identify potential factors influencing age-related cognitive decline and disease, we created MindCrowd. MindCrowd is a cross-sectional web-based assessment of simple visual (sv) reaction time (RT) and paired-associate learning (PAL). svRT and PAL results were combined with 22 survey questions. Analysis of svRT revealed education and stroke as potential modifiers of changes in processing speed and memory from younger to older ages (ntotal = 75,666, nwomen = 47,700, nmen = 27,966; ages 18-85 years old, mean (M)Age = 46.54, standard deviation (SD)Age = 18.40). To complement this work, we evaluated complex visual recognition reaction time (cvrRT) in the UK Biobank (ntotal = 158,249 nwomen = 89,333 nmen = 68,916; ages 40-70 years old, MAge = 55.81, SDAge = 7.72). Similarities between the UK Biobank and MindCrowd were assessed using a subset of MindCrowd (UKBb MindCrowd) selected to mirror the UK Biobank demographics (ntotal = 39,795, nwomen = 29,640, nmen = 10,155; ages 40-70 years old, MAge = 56.59, SDAge = 8.16). An identical linear model (LM) was used to assess both cohorts. Analyses revealed similarities between MindCrowd and the UK Biobank across most results. Divergent findings from the UK Biobank included (1) a first-degree family history of Alzheimer's disease (FHAD) was associated with longer cvrRT. (2) Men with the least education were associated with longer cvrRTs comparable to women across all educational attainment levels. Divergent findings from UKBb MindCrowd included more education being associated with shorter svRTs and a history of smoking with longer svRTs from younger to older ages.

2.
Sci Rep ; 11(1): 10248, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986309

ABSTRACT

Vascular contributions to cognitive impairment and dementia (VCID) include structural and functional blood vessel injuries linked to poor neurocognitive outcomes. Smoking might indirectly increase the likelihood of cognitive impairment by exacerbating vascular disease risks. Sex disparities in VCID have been reported, however, few studies have assessed the sex-specific relationships between smoking and memory performance and with contradictory results. We investigated the associations between sex, smoking, and cardiovascular disease with verbal learning and memory function. Using MindCrowd, an observational web-based cohort of ~ 70,000 people aged 18-85, we investigated whether sex modifies the relationship between smoking and cardiovascular disease with verbal memory performance. We found significant interactions in that smoking is associated with verbal learning performance more in women and cardiovascular disease more in men across a wide age range. These results suggest that smoking and cardiovascular disease may impact verbal learning and memory throughout adulthood differently for men and women.


Subject(s)
Cigarette Smoking/adverse effects , Memory/drug effects , Verbal Learning/drug effects , Adult , Aged , Aged, 80 and over , Cigarette Smoking/psychology , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/physiopathology , Cohort Studies , Dementia, Vascular/etiology , Female , Humans , Male , Memory/physiology , Middle Aged , Sex Factors , Verbal Learning/physiology
3.
Am J Med Genet A ; 173(3): 611-617, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28139025

ABSTRACT

Mutations in CASK cause X-linked intellectual disability, microcephaly with pontine and cerebellar hypoplasia, optic atrophy, nystagmus, feeding difficulties, GI hypomotility, and seizures. Here we present a patient with a de novo carboxyl-terminus splice site mutation in CASK (c.2521-2A>G) and clinical features of the rare FG syndrome-4 (FGS4). We provide further characterization of genotype-phenotype correlations in CASK mutations and the presentation of nystagmus and the FGS4 phenotype. There is considerable variability in clinical phenotype among patients with a CASK mutation, even among variants predicted to have similar functionality. Our patient presented with developmental delay, nystagmus, and severe gastrointestinal and gastroesophageal complications. From a cognitive and neuropsychological perspective, language skills and IQ are within normal range, although visual-motor, motor development, behavior, and working memory were impaired. The c.2521-2A>G splice mutation leads to skipping of exon 26 and a 9 base-pair deletion associated with a cryptic splice site, leading to a 28-AA and a 3-AA in-frame deletion, respectively (p.Ala841_Lys843del and p.Ala841_Glu868del). The predominant mutant transcripts contain an aberrant guanylate kinase domain and thus are predicted to degrade CASK's ability to interact with important neuronal and ocular development proteins, including FRMD7. Upregulation of CASK as well as dysregulation among a number of interactors is also evident by RNA-seq. This is the second CASK mutation known to us as cause of FGS4. © 2017 Wiley Periodicals, Inc.


Subject(s)
Agenesis of Corpus Callosum/diagnosis , Agenesis of Corpus Callosum/genetics , Anus, Imperforate/diagnosis , Anus, Imperforate/genetics , Constipation/diagnosis , Constipation/genetics , Guanylate Kinases/genetics , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Muscle Hypotonia/congenital , Mutation , Nystagmus, Congenital/diagnosis , Nystagmus, Congenital/genetics , RNA Splice Sites , Adolescent , Child , Child, Preschool , Facies , Female , Gene Expression , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Male , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Neuropsychological Tests , Phenotype , Polymorphism, Single Nucleotide
4.
Methods Enzymol ; 576: 305-31, 2016.
Article in English | MEDLINE | ID: mdl-27480691

ABSTRACT

Glandular trichomes are specialized tissues on the epidermis of many plant species. On tomato they synthesize, store, and emit a variety of metabolites such as terpenoids, which play a role in the interaction with insects. Glandular trichomes are excellent tissues for studying the biosynthesis of specialized plant metabolites and are especially suitable targets for metabolic engineering. Here we describe the strategy for engineering tomato glandular trichomes, first with a transient expression system to provide proof of trichome specificity of selected promoters. Using microparticle bombardment, the trichome specificity of a terpene-synthase promoter could be validated in a relatively fast way. Second, we describe a method for stable expression of genes of interest in trichomes. Trichome-specific expression of another terpene-synthase promoter driving the yellow-fluorescence protein-gene is presented. Finally, we describe a case of the overexpression of farnesyl diphosphate synthase (FPS), specifically in tomato glandular trichomes, providing an important precursor in the biosynthetic pathway of sesquiterpenoids. FPS was targeted to the plastid aiming to engineer sesquiterpenoid production, but interestingly leading to a loss of monoterpenoid production in the transgenic tomato trichomes. With this example we show that trichomes are amenable to engineering though, even with knowledge of a biochemical pathway, the result of such engineering can be unexpected.


Subject(s)
Alkyl and Aryl Transferases/genetics , Genetic Engineering/methods , Geranyltranstransferase/genetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Terpenes/metabolism , Trichomes/genetics , Alkyl and Aryl Transferases/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Plant , Genes, Plant , Geranyltranstransferase/metabolism , Solanum lycopersicum/metabolism , Metabolic Engineering/methods , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Transgenes , Trichomes/metabolism
5.
Mol Psychiatry ; 20(11): 1294-300, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26324103

ABSTRACT

We have sequenced the complete genomes of 72 individuals affected with early-onset familial Alzheimer's disease caused by an autosomal dominant, highly penetrant mutation in the presenilin-1 (PSEN1) gene, and performed genome-wide association testing to identify variants that modify age at onset (AAO) of Alzheimer's disease. Our analysis identified a haplotype of single-nucleotide polymorphisms (SNPs) on chromosome 17 within a chemokine gene cluster associated with delayed onset of mild-cognitive impairment and dementia. Individuals carrying this haplotype had a mean AAO of mild-cognitive impairment at 51.0 ± 5.2 years compared with 41.1 ± 7.4 years for those without these SNPs. This haplotype thus appears to modify Alzheimer's AAO, conferring a large (~10 years) protective effect. The associated locus harbors several chemokines including eotaxin-1 encoded by CCL11, and the haplotype includes a missense polymorphism in this gene. Validating this association, we found plasma eotaxin-1 levels were correlated with disease AAO in an independent cohort from the University of California San Francisco Memory and Aging Center. In this second cohort, the associated haplotype disrupted the typical age-associated increase of eotaxin-1 levels, suggesting a complex regulatory role for this haplotype in the general population. Altogether, these results suggest eotaxin-1 as a novel modifier of Alzheimer's disease AAO and open potential avenues for therapy.


Subject(s)
Alzheimer Disease/genetics , Chemokine CCL11/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Age of Onset , Aged , Alzheimer Disease/blood , Alzheimer Disease/complications , Chemokine CCL11/blood , Chromosomes, Human, Pair 17/genetics , Cognition Disorders/etiology , Cognition Disorders/genetics , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged
6.
Plant Mol Biol ; 51(1): 83-98, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12602893

ABSTRACT

In order to make the tomato genome more accessible for molecular analysis and gene cloning, we have produced 405 individual tomato (Lycopersicon esculentum) lines containing a characterized copy of pJasm13, a multifunctional T-DNA/modified Ds transposon element construct. Both the T-DNA and the Ds element in pJasm13 harbor a set of selectable marker genes to monitor excision and reintegration of Ds and additionally, target sequences for rare cutting restriction enzymes (I-PpoI, SfiI, NotI) and for site-specific recombinases (Cre, FLP, R). Blast analysis of flanking genomic sequences of 174 T-DNA inserts revealed homology to transcribed genes in 69 (40%), of which about half are known or putatively identified as genes and ESTs. The map position of 140 individual inserts was determined on the molecular genetic map of tomato. These inserts are distributed over the 12 chromosomes of tomato, allowing targeted and non-targeted transposon tagging, marking of closely linked genes of interest and induction of chromosomal rearrangements including translocations or creation of saturation-deletions or inversions within defined regions linked to the T-DNA insertion site. The different features of pJasm13 were successfully tested in tomato and Arabidopsis thaliana, thus providing a new tool for molecular/genetic dissection studies, including molecular and physical mapping, mutation analysis and cloning strategies in tomato and potentially, in other plants as well.


Subject(s)
Cloning, Molecular/methods , DNA, Bacterial/genetics , DNA, Plant/genetics , Genome, Plant , Solanum lycopersicum/genetics , Genetic Markers , Genetic Vectors , Plasmids , Polymorphism, Genetic , Recombination, Genetic , Restriction Mapping
7.
Nat Biotechnol ; 16(13): 1365-9, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9853621

ABSTRACT

Mi-1, a Lycopersicon peruvianum gene conferring resistance to the agricultural pests, root-knot nematodes, and introgressed into tomato, has been cloned using a selective restriction fragment amplification based strategy. Complementation analysis of a susceptible tomato line with a 100 kb cosmid array yielded a single cosmid clone capable of conferring resistance both to the root-knot nematode Meloidogyne incognita and to an unrelated pathogen, the potato aphid Macrosiphum euphorbiae. This resistance was stable. The Mi-1 gene encodes a protein sharing structural features with the nucleotide-binding site leucine-rich repeat-containing type of plant resistance genes.


Subject(s)
Aphids , Genes, Plant , Nematoda , Plant Proteins/genetics , Solanum lycopersicum/genetics , Solanum tuberosum/parasitology , Amino Acid Sequence , Animals , Cloning, Molecular , Cosmids , Genetic Complementation Test , Solanum lycopersicum/parasitology , Molecular Sequence Data , Plant Proteins/chemistry
8.
Plant Cell ; 10(6): 1055-68, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9634592

ABSTRACT

The I2 locus in tomato confers resistance to race 2 of the soil-borne fungus Fusarium oxysporum f sp lycopersici. The selective restriction fragment amplification (AFLP) positional cloning strategy was used to identify I2 in the tomato genome. A yeast artificial chromosome (YAC) clone covering approximately 750 kb encompassing the I2 locus was isolated, and the AFLP technique was used to derive tightly linked AFLP markers from this YAC clone. Genetic complementation analysis in transgenic R1 plants using a set of overlapping cosmids covering the I2 locus revealed three cosmids giving full resistance to F. o. lycopersici race 2. These cosmids shared a 7-kb DNA fragment containing an open reading frame encoding a protein with similarity to the nucleotide binding site leucine-rich repeat family of resistance genes. At the I2 locus, we identified six additional homologs that included the recently identified I2C-1 and I2C-2 genes. However, cosmids containing the I2C-1 or I2C-2 gene could not confer resistance to plants, indicating that these members are not the functional resistance genes. Alignments between the various members of the I2 gene family revealed two significant variable regions within the leucine-rich repeat region. They consisted of deletions or duplications of one or more leucine-rich repeats. We propose that one or both of these leucine-rich repeats are involved in Fusarium wilt resistance with I2 specificity.


Subject(s)
Chromosome Mapping , DNA-Binding Proteins/genetics , Fusarium/pathogenicity , Genes, Plant , Multigene Family , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Amino Acid Sequence , Base Sequence , Chromosomes, Artificial, Yeast , Cosmids , DNA Primers , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/chemistry , Gene Amplification , Genome, Plant , Immunity, Innate/genetics , Molecular Sequence Data , Plant Proteins/genetics , Polymerase Chain Reaction , Restriction Mapping , Sequence Alignment , Sequence Homology, Amino Acid
9.
Mutat Res ; 103(3-6): 321-6, 1982 Mar.
Article in English | MEDLINE | ID: mdl-6178023

ABSTRACT

A relatively straightforward approach is described to obtain differential contrast in sister chromatids for SCE detection in Vicia faba after BrdUrd incorporation. The hydrolysis time of the well-known Feulgen reaction was extended to differentially degrade the DNA, the BrdUrd-substituted strands being more resistant. The procedure may easily be adapted for other plant species with large chromosomes.


Subject(s)
Coloring Agents , Crossing Over, Genetic , Plants/genetics , Rosaniline Dyes , Sister Chromatid Exchange , Staining and Labeling/methods , Bromodeoxyuridine/pharmacology , DNA/analysis , Fabaceae/genetics , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL
...