Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
J Mater Chem C Mater ; 12(31): 11785-11802, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39132257

ABSTRACT

The most efficient upconversion (UC) materials reported to date are based on fluoride hosts with low phonon energies, which reduce the amount of nonradiative transitions. In particular, NaYF4 doped with Yb3+ and Er3+ at appropriate ratios is known as one of the most efficient UC phosphors. However, its low thermal stability limits its use for certain applications. On the other hand, oxide hosts exhibit better thermal stability, yet they have higher phonon energies and are thus prone to lower UC efficiencies. As a result, developing host nanomaterials that combine the robustness of oxides with the high upconversion efficiencies of fluorides remains an intriguing prospect. Herein, we demonstrate the formation of ytrrium doped oxyfluoride (YOF:Yb3+,Er3+) particles, which are prepared by growing a NaYF4:Yb3+,Er3+ layer around SiO2 spherical particles and consecutively applying a high-temperature annealing step followed by the removal of SiO2 template. Our interest lies in employing these materials as Boltzmann type physiological range luminescence thermometers, but their weak green emission is a drawback. To overcome this issue, and engineer materials suitable for Boltzmann type thermometry, we have studied the effect of introducing different metal ion co-dopants (Gd3+, Li+ or Mn2+) into the YOF:Yb3+,Er3+ particles, focusing on the overall emission intensity, as well as the green to red ratio, upon 975 nm laser excitation. These materials are explored for their use as ratiometric thermometers, and further also as drug carriers, including their simultaneous use for these two applications. The investigation also includes examining their level of toxicity towards specific human cells - normal human dermal fibroblasts (NHDFs) - to evaluate their potential use for biological applications.

2.
ACS Appl Mater Interfaces ; 16(31): 41134-41144, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39077874

ABSTRACT

In contrast to the widely studied electrical properties of Pb(Zr,Ti)O3 thin films, which have led to their applicability in various application areas such as thin film capacitors, microelectronics, and ferroelectric memories, the electro-optic (EO) properties are far less studied, which hinders the applicability of Pb(Zr,Ti)O3 films for EO applications such as heterogeneously integrated phase modulators in silicon (Si) photonics. Therefore, the EO properties of Pb(Zr,Ti)O3 films need to be further investigated to pave the way for the applicability of Pb(Zr,Ti)O3 films in EO applications. As the EO properties of ferroelectric thin films strongly depend on their crystal phase and texture, which in turn are influenced by the method of film fabrication. Therefore, in this work, we investigate the EO properties of a promising solution process using a La2O2CO3 template film. We successively characterize the precursor ink, microstructure and EO properties of the solution-processed Pb(Zr,Ti)O3film. The Pb(Zr,Ti)O3 film exhibits a fiber texture and has a large maximum and remnant Pockels coefficient (reff) of 69 pm V-1 and 66 pm V-1, respectively. The integration into a ring resonator-based modulator shows a VπL of 2.019 V cm. The determination of these promising EO properties could further pave the way for the applicability of Pb(Zr,Ti)O3 thin films in Si photonics.

3.
J Am Chem Soc ; 146(15): 10723-10734, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588404

ABSTRACT

Nonaqueous sol-gel syntheses have been used to make many types of metal oxide nanocrystals. According to the current paradigm, nonaqueous syntheses have slow kinetics, thus favoring the thermodynamic (crystalline) product. Here we investigate the synthesis of hafnium (and zirconium) oxide nanocrystals from the metal chloride in benzyl alcohol. We follow the transition from precursor to nanocrystal through a combination of rheology, EXAFS, NMR, TEM, and X-ray total scattering (PDF analysis). Upon dissolving the metal chloride precursor, the exchange of chloride ligands for benzylalkoxide liberates HCl. The latter catalyzes the etherification of benzyl alcohol, eliminating water. During the temperature ramp to the reaction temperature (220 °C), sufficient water is produced to turn the reaction mixture into a macroscopic gel. Rheological analysis shows a network consisting of strong interactions with temperature-dependent restructuring. After a few minutes at the reaction temperature, crystalline particles emerge from the gel, and nucleation and growth are complete after 30 min. In contrast, 4 h are required to obtain the highest isolated yield, which we attribute to the slow in situ formation of water (the extraction solvent). We used our mechanistic insights to optimize the synthesis, achieving high isolated yields with a reduced reaction time. Our results oppose the idea that nonaqueous sol-gel syntheses necessarily form crystalline products in one step, without a transient, amorphous gel state.

4.
Small Methods ; : e2301499, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200600

ABSTRACT

Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even µ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.

5.
Chem Sci ; 14(3): 573-585, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36741516

ABSTRACT

Metal oxo clusters of the type M6O4(OH)4(OOCR)12 (M = Zr or Hf) are valuable building blocks for materials science. Here, we synthesize a series of zirconium and hafnium oxo clusters with ligands that are typically used to stabilize oxide nanocrystals (fatty acids with long and/or branched chains). The fatty acid capped oxo clusters have a high solubility but do not crystallize, precluding traditional purification and single-crystal XRD analysis. We thus develop alternative purification strategies and we use X-ray total scattering and Pair Distribution Function (PDF) analysis as our main method to elucidate the structure of the cluster core. We identify the correct structure from a series of possible clusters (Zr3, Zr4, Zr6, Zr12, Zr10, and Zr26). Excellent refinements are only obtained when the ligands are part of the structure model. Further evidence for the cluster composition is provided by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), and mass spectrometry (MS). We find that hydrogen bonded carboxylic acid is an intrinsic part of the oxo cluster. Using our analytical tools, we elucidate the conversion from a Zr6 monomer to a Zr12 dimer (and vice versa), induced by carboxylate ligand exchange. Finally, we compare the catalytic performance of Zr12-oleate clusters with oleate capped, 5.5 nm zirconium oxide nanocrystals in the esterification of oleic acid with ethanol. The oxo clusters present a five times higher reaction rate, due to their higher surface area. Since the oxo clusters are the lower limit of downscaling oxide nanocrystals, we present them as appealing catalytic materials, and as atomically precise model systems. In addition, the lessons learned regarding PDF analysis are applicable to other areas of cluster science as well, from semiconductor and metal clusters, to polyoxometalates.

6.
ACS Nano ; 16(5): 7361-7372, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35476907

ABSTRACT

Ligands play a crucial role in the synthesis of colloidal nanocrystals. Nevertheless, only a handful molecules are currently used, oleic acid being the most typical example. Here, we show that monoalkyl phosphinic acids are another interesting ligand class, forming metal complexes with a reactivity that is intermediate between the traditional carboxylates and phosphonates. We first present the synthesis of n-hexyl, 2-ethylhexyl, n-tetradecyl, n-octadecyl, and oleylphosphinic acid. These compounds are suitable ligands for high-temperature nanocrystal synthesis (240-300 °C) since, in contrast to phosphonic acids, they do not form anhydride oligomers. Consequently, CdSe quantum dots synthesized with octadecylphosphinic acid are conveniently purified, and their UV-vis spectrum is free from background scattering. The CdSe nanocrystals have a low polydispersity and a photoluminescence quantum yield up to 18% (without shell). Furthermore, we could synthesize CdSe and CdS nanorods using phosphinic acid ligands with high shape purity. We conclude that the reactivity toward TOP-S and TOP-Se precursors decreases in the following series: cadmium carboxylate > cadmium phosphinate > cadmium phosphonate. By introducing a third and intermediate class of surfactants, we enhance the versatility of surfactant-assisted syntheses.

7.
JACS Au ; 2(3): 711-722, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373200

ABSTRACT

Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.

8.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 2): 184-190, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35145748

ABSTRACT

The synthesis and single-crystal X-ray structures of three N,N,N'-tris-ubstituted thio-ureas are reported, namely N,N,N'-tri-benzyl-thio-urea, C22H22N2S (1), N-methyl-N,N'-di-phenyl-thio-urea, C14H14N2S (2), and N,N-di-n-butyl-N'-phenylthio-urea, C15H24N2S (3). The influence of the different substituents on the thio-ureas is clear from the delocalization of the thio-urea C-N and C=S bonds, while the crystal structures show infinite chains of N,N,N'-tri-benzyl-thio-urea (1), hydrogen-bonded pairs of N-methyl-N,N'-di-phenyl-thio-urea (2) and hexa-mer ring assemblies of N,N-di-n-butyl-N'-phenylthio-urea (3) mol-ecules. The above-mentioned compounds were synthesized via a mild, general procedure, readily accessible precursors and with a high yield, providing straightforward access to a whole library of thio-ureas.

9.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34578482

ABSTRACT

The development of delivery systems for the immobilization of nucleic acid cargo molecules is of prime importance due to the need for safe administration of DNA or RNA type of antigens and adjuvants in vaccines. Nanoparticles (NP) in the size range of 20-200 nm have attractive properties as vaccine carriers because they achieve passive targeting of immune cells and can enhance the immune response of a weakly immunogenic antigen via their size. We prepared high capacity 50 nm diameter silica@zirconia NPs with monoclinic/cubic zirconia shell by a green, cheap and up-scalable sol-gel method. We studied the behavior of the particles upon water dialysis and found that the ageing of the zirconia shell is a major determinant of the colloidal stability after transfer into the water due to physisorption of the zirconia starting material on the surface. We determined the optimum conditions for adsorption of DNA building blocks, deoxynucleoside monophosphates (dNMP), the colloidal stability of the resulting NPs and its time dependence. The ligand adsorption was favored by acidic pH, while colloidal stability required neutral-alkaline pH; thus, the optimal pH for the preparation of nucleic acid-modified particles is between 7.0-7.5. The developed silica@zirconia NPs bind as high as 207 mg dNMPs on 1 g of nanocarrier at neutral-physiological pH while maintaining good colloidal stability. We studied the influence of biological buffers and found that while phosphate buffers decrease the loading dramatically, other commonly used buffers, such as HEPES, are compatible with the nanoplatform. We propose the prepared silica@zirconia NPs as promising carriers for nucleic acid-type drug cargos.

10.
Materials (Basel) ; 13(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033090

ABSTRACT

Monometallic cerium layered double hydroxides (Ce-LDH) supports were successfully synthesized by a homogeneous alkalization route driven by hexamethylenetetramine (HMT). The formation of the Ce-LDH was confirmed and its structural and compositional properties studied by XRD, SEM, XPS, iodometric analyses and TGA. HT-XRD, N2-sorption and XRF analyses revealed that by increasing the calcination temperature from 200 to 800 °C, the Ce-LDH material transforms to ceria (CeO2) in four distinct phases, i.e., the loss of intramolecular water, dehydroxylation, removal of nitrate groups and removal of sulfate groups. When loaded with 2.5 wt% palladium (Pd) and 2.5 wt% nickel (Ni) and calcined at 500 °C, the PdNi-Ce-LDH-derived catalysts strongly outperform the PdNi-CeO2 benchmark catalyst in terms of conversion as well as selectivity for the hydrogenolysis of benzyl phenyl ether (BPE), a model compound for the α-O-4 ether linkage in lignin. The PdNi-Ce-LDH catalysts showed full selectivity towards phenol and toluene while the PdNi-CeO2 catalysts showed additional oxidation of toluene to benzoic acid. The highest BPE conversion was observed with the PdNi-Ce-LDH catalyst calcined at 600 °C, which could be related to an optimum in morphological and compositional characteristics of the support.

11.
Materials (Basel) ; 11(7)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29958401

ABSTRACT

The thickness characterization of transparent protective coatings on functional, transparent materials is often problematic. In this paper, a toolbox to determine the thicknesses of a transparent coating on functional window films is presented. The toolbox consists of a combination of secondary ion mass spectrometry and profilometry and can be transferred to other transparent polymeric materials. A coating was deposited on designed model samples, which were characterized with cross-sectional views in transmission and in scanning/transmission electron microscopy and ellipsometry. The toolbox was then used to assess the thicknesses of the protective coatings on the pilot-scale window films. This coating was synthesized using straightforward sol-gel alkoxide chemistry. The kinetics of the condensation are studied in order to obtain a precursor that allows fast drying and complete condensation after simple heat treatment. The shelf life of this precursor solution was investigated in order to verify its accordance to industrial requirements. Deposition was performed successfully at low temperatures below 100 °C, which makes deposition on polymeric foils possible. By using roll-to-roll coating, the findings of this paper are easily transferrable to industrial scale. The coating was tested for scratch resistance and adhesion. Values for the emissivity (ε) of the films were recorded to justify the use of the films obtained as infrared reflective window films. In this work, it is shown that the toolbox measures similar thicknesses to those measured by electron microscopy and can be used to set a required thickness for protective coatings.

12.
Materials (Basel) ; 11(7)2018 Jun 23.
Article in English | MEDLINE | ID: mdl-29937505

ABSTRACT

The formation of superconducting nanocomposites from preformed nanocrystals is still not well understood. Here, we examine the case of ZrO2 nanocrystals in a YBa2Cu3O7−x matrix. First we analyzed the preformed ZrO2 nanocrystals via atomic pair distribution function analysis and found that the nanocrystals have a distorted tetragonal crystal structure. Second, we investigated the influence of various surface ligands attached to the ZrO2 nanocrystals on the distribution of metal ions in the pyrolyzed matrix via secondary ion mass spectroscopy technique. The choice of stabilizing ligand is crucial in order to obtain good superconducting nanocomposite films with vortex pinning. Short, carboxylate based ligands lead to poor superconducting properties due to the inhomogeneity of metal content in the pyrolyzed matrix. Counter-intuitively, a phosphonate ligand with long chains does not disturb the growth of YBa2Cu3O7−x. Even more surprisingly, bisphosphonate polymeric ligands provide good colloidal stability in solution but do not prevent coagulation in the final film, resulting in poor pinning. These results thus shed light on the various stages of the superconducting nanocomposite formation.

13.
ACS Appl Mater Interfaces ; 8(43): 29759-29769, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27734676

ABSTRACT

A method to obtain photocatalytically active thin films of anatase nanocrystals on polymer substrates was explored. Anatase nanocrystals were synthesized by a fast hydrolysis synthesis in an apolar solvent and characterized with regard to their crystallinity, size, and dispersibility and the stability of the resulting suspensions. The stable titania nanocrystal suspensions were further processed for their use in polar solvents using ligand exchange. Oleic acid was exchanged for 3-aminopropyltriethoxysilane (APTES), resulting in aqueous suspensions of charge-stabilized nanocrystals. These were adapted for use as coating suspensions for surface-treated PMMA substrates in order to obtain thin films containing anatase nanocrystals covalently coupled to the surface of the PMMA substrates. Thereby, the ligand exchange was beneficial for increasing the compatibility and durability of the inorganic/organic composite, by the formation of a covalent amide bond between the silane ligands on the nanocrystals and the carboxylic acid groups on the polymer substrate. The surface morphology, transparency, and photocatalytic activity toward the degradation of organic pollutants of the coatings, obtained through dip-coating, were evaluated.

14.
ACS Appl Mater Interfaces ; 8(20): 13027-36, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27120131

ABSTRACT

In this work, we present preparation and stabilization methods for highly crystalline TiO2 nanoparticle suspensions for the successful deposition of transparent, photocatalytically active TiO2 thin films toward the degradation of organic pollutants by a low temperature deposition method. A proof-of-concept is provided wherein stable, aqueous TiO2 suspensions are deposited on glass substrates. Even if the processing temperature is lowered to 150-200 °C, the subsequent heat treatment provides transparent and photocatalytically active titania thin layers. Because all precursor solutions are water-based, this method provides an energy-efficient, sustainable, and environmentally friendly synthesis route. The high load in crystalline titania particles obtained after microwave heating opens up the possibility to produce thin coatings by low temperature processing, as a conventional crystallization procedure is in this case superfluous. The impact of the precursor chemistry in Ti(4+)-peroxo solutions, containing imino-diacetic acid as a complexing ligand and different bases to promote complexation was studied as a function of pH, reaction time and temperature. The nanocrystal formation was followed in terms of colloidal stability, crystallinity and particle size. Combined data from Raman and infrared spectroscopy, confirmed that stable titanium precursors could be obtained at pH levels ranging from 2 to 11. A maximum amount of 50.7% crystallinity was achieved, which is one of the highest reported amounts of anatase nanoparticles that are suspendable in stable aqueous titania suspensions. Decoloring of methylene blue solutions by precipitated nanosized powders from the TiO2 suspensions proves their photocatalytic properties toward degradation of organic materials, a key requisite for further processing. This synthesis method proves that the deposition of highly crystalline anatase suspensions is a valid route for the production of photocatalytically active, transparent films on heat-sensitive substrates such as polymers.

15.
Materials (Basel) ; 8(4): 1652-1665, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-28788023

ABSTRACT

Mesoporous carbons were synthesized via both soft and hard template methods and compared to a commercial powder activated carbon (PAC) for the adsorption ability of bisphenol-A (BPA) from an aqueous solution. The commercial PAC had a BET-surface of 1027 m²/g with fine pores of 3 nm and less. The hard templated carbon (CMK-3) material had an even higher BET-surface of 1420 m²/g with an average pore size of 4 nm. The soft templated carbon (SMC) reached a BET-surface of 476 m²/g and a pore size of 7 nm. The maximum observed adsorption capacity (qmax) of CMK-3 was the highest with 474 mg/g, compared to 290 mg/g for PAC and 154 mg/g for SMC. The difference in adsorption capacities was attributed to the specific surface area and hydrophobicity of the adsorbent. The microporous PAC showed the slowest adsorption, while the ordered mesopores of SMC and CMK-3 enhanced the BPA diffusion into the adsorbent. This difference in adsorption kinetics is caused by the increase in pore diameter. However, CMK-3 with an open geometry consisting of interlinked nanorods allows for even faster intraparticle diffusion.

16.
Inorg Chem ; 53(10): 4913-21, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24779469

ABSTRACT

In this Article, epitaxial thin films of SrTiO3 were prepared on single crystalline (100) LaAlO3 by an aqueous chemical solution deposition method. By using different chelating agents to stabilize the metal ions in water, the impact of the precursor chemistry on the microstructural and crystalline properties of the films was studied. Thorough investigation of the precursor by means of infrared and Raman spectroscopy as well as thermogravimetric analysis revealed that stable precursors can be obtained in which strontium ions can be either free in the solution or stabilized by one of the chelating agents. This stabilization of strontium ions appeared to be essential in order to obtain single phase SrTiO3 films. Precursors in which Sr(2+) remained as free ions showed SrO microcrystal segregation. Precursors in which both metal ions were stabilized gave rise to strongly textured, dense, and terraced SrTiO3 films, allowing subsequent deposition of YBa2Cu3O7-δ with superior superconducting performances.

17.
Materials (Basel) ; 6(9): 4082-4095, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-28788319

ABSTRACT

In this paper, the formation of ZrO2 and yttria-stabilised-zirconia (YSZ) aqueous colloidal systems via microwave assisted hydrothermal synthesis is studied. Microwave synthesis allows a fast screening of the influence of different parameters such as time and temperature. The temperature varied from 140 °C up to 180 °C and the used reaction time varied from 5 min up to 1 h. The synthesised zirconia nanoparticles have a particle size of 50 nm confirmed by TEM. A ¹H NMR (nuclear magnetic resonance) study helped to understand the stabilization mechanism of the synthesised particles. By the addition of ytrrium ions into the zirconia colloidal solution, YSZ could be formed via an additional thermal treatment. Hereby, the samples are heated up to 400 °C for 1 h. YSZ colloidal solutions are synthesised by making use of complexing agents such as nitrilotriacetic acid, ethylenediaminetetraacetic acid and citric acid to control the hydrolysis and condensation of both ions to avoid non-stoichiometric phases. The ratio of Zr/Y in the particles is quantified by XRF. The amorphous structure of those particles necessitates an additional thermal treatment up to 600 °C during 1 h in order to obtain crystalline YSZ.

18.
Dalton Trans ; 41(12): 3574-82, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22315012

ABSTRACT

In this work, we investigate the chemistry for an aqueous acetate-triethanolamine-ammonia based YBa(2)Cu(3)O(7-δ) (YBCO) precursor system. These precursor solutions are suited for the chemical solution deposition of superconducting YBCO layers on top of single crystal SrTiO(3) or buffered NiW tapes. The development of this kind of precursor inks often involves trial-and-error experimenting and thus is very time-consuming. To reduce labwork to the minimum, the theoretical prediction of pH stability limits and the complexation behaviour of the different metal ions and complexants in the inks are very important. For this purpose, we simulated, based on literature values, the complexation behaviour of Cu(2+) in the aqueous precursor solutions as a function of pH. To validate the used model, we performed potentiometric pH titrations for solutions with similar composition and checked the correctness of fit between experiment and model. The generated complexometric results are coupled with X-band EPR spectra to further confirm the results. EPR spectra for fully prepared precursor solutions as well as for Cu(2+) reference solutions containing only one type of ligand (acetate, triethanolamine or ammonia) were investigated as a function of pH. We find that, in line with speciation simulation, only acetates are actively complexing the Cu(2+) ions at pH values below 7, while when reaching higher pH levels mainly triethanolamine complexes are formed. Over the entire pH range, no trace of free Cu(2+)or Cu(OH)(2), possibly creating precipitation during gelation and thus complicating further processing, could be found.

19.
Materials (Basel) ; 5(3): 364-376, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-28817051

ABSTRACT

Lanthanum zirconate (LZO) films from water-based precursors were deposited on Ni-5%W tape by chemical solution deposition. The buffer capacity of these layers includes the prevention of Ni oxidation of the substrate and Ni penetration towards the YBCO film which is detrimental for the superconducting properties. X-ray Photoelectron Spectroscopy depth profiling was used to study the barrier efficiency before and after an additional oxygen annealing step, which simulates the thermal treatment for YBCO thin film synthesis. Measurements revealed that the thermal treatment in presence of oxygen could severely increase Ni diffusion. Nonetheless it was shown that from the water-based precursors' buffer layers with sufficient barrier capacity towards Ni penetration could be synthesized if the layers meet a certain critical thickness and density.

20.
Inorg Chem ; 49(10): 4471-7, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20405962

ABSTRACT

In this work, the reaction mechanism used in the preparation of fluorine-free superconducting YBa(2)Cu(3)O(7-delta) (YBCO) was investigated. To determine which precursor interactions are dominant, a comprehensive thermal analysis (thermogravimetric analysis-differential thermal analysis) study was performed. The results suggest that a three step reaction mechanism, with a predominant role for BaCO(3), is responsible for the conversion of the initial state to the superconducting phase. In the presence of CuO, the decarboxylation of BaCO(3) is kinetically favored with the formation of BaCuO(2) as a result. BaCuO(2) reacts with the remaining CuO to form a liquid which ultimately reacts with Y(2)O(3) in a last step to form YBCO. High temperature X-ray diffraction experiments confirm that these results are applicable for thin film synthesis prepared from an aqueous fluorine-free sol-gel precursor.

SELECTION OF CITATIONS
SEARCH DETAIL