Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 415(25): 6363-6373, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37606645

ABSTRACT

Coiled tube field-flow fractionation (CTFFF) is currently applied to environmental and material studies. In the present work, a novel zone elution mode in CTFFF has been proposed and developed. Zone elution mode is based on the separation of particles by stepwise decreasing the flow rate of the carrier fluid and their subsequent elution at a constant flow rate. The fractionation parameters were optimized using a mixture of standard silica submicron particles (150, 390, and 900 nm). Taking samples of volcanic ash as examples, it has been demonstrated that zone elution mode can be successfully used for the fractionation of environmental nano- and submicron particles. For the first time, CTFFF was coupled online with a dynamic light scattering detector for the size characterization of eluted particles. Zone elution in CTFFF can serve for the further development of hyphenated techniques enabling efficient fractionation and size/elemental characterization of environmental particles in nano- and submicrometric size ranges.

2.
J Sep Sci ; 45(1): 347-368, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34520628

ABSTRACT

This review presents field-flow fractionation: The elements of theory enable the link between the retention and the characteristics of the nanometer-sized analytes to be highlighted. In particular, the nature of force and its way of being applied are discussed. Four types of forces which determine four types of techniques were considered: hydrodynamic, sedimentation, thermal, and electrical; this is to show the importance of the choice of technique in relation to the characterization objectives. Then the separation performance is presented and compared with other separation techniques: field-flow fractionation has the greatest intrinsic separation capability. The characterization strategies are presented and discussed; on the one hand with respect to the characteristics needed for the description of nanoparticles; on the other hand in connection with the choice of the nature of the force, and also of the detectors used, online or offline. The discussion is based on a selection of published study examples. Finally, current needs and challenges are addressed, and as response, trends and possible characterization solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...