Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Environ Virol ; 9(1): 79-88, 2017 03.
Article in English | MEDLINE | ID: mdl-27682315

ABSTRACT

Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.


Subject(s)
Drinking Water/virology , Enterovirus/isolation & purification , Rivers/virology , Wastewater/virology , Enterovirus/classification , Enterovirus/genetics , Environmental Monitoring , Humans , Water Pollution/analysis , Water Purification
2.
Environ Sci Pollut Res Int ; 23(15): 15302-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27106076

ABSTRACT

The aim of this study was the evaluation of the occurrence of pathogenic Campylobacter, Escherichia coli O157:H7, E. coli virulence genes and Salmonella spp. in different wastewater treatment plants (WWTPs) using a method based on an enrichment step and PCR. This method was sensitive enough to detect low levels (∼2 CFU100 ml(-1) of raw sewage) of all the investigated pathogens. In the WWTP samples, E. coli O157:H7 DNA and the eae gene were never found, but 33 % of influents and effluents exhibited amplicons corresponding to Shiga-like toxin I. Twenty-five percent of the influent and 8 % of the effluent exhibited the presence of Shiga-like toxin II. Campylobacter jejuni and C. coli DNA were identified in 50 and 25 % of the influents and in 8 and 25 % of the effluents, respectively. Salmonella spp. DNA was present in all the samples. Considering the results obtained, the method tested here offers a reliable and expeditious tool for evaluating the efficiency of the effluent treatment in order to mitigate contamination risk. Influent contamination by Salmonella spp. and Campylobacter spp. provides indirect information about their circulation; moreover, their presence in effluents underlines the role of WWTPs in the contamination of the receiving surface waters, which affects public health directly or indirectly.


Subject(s)
Campylobacter jejuni/genetics , Escherichia coli O157/genetics , Salmonella/genetics , Wastewater/microbiology , Animals , Feces/microbiology , Genes, Bacterial , Molecular Typing , Polymerase Chain Reaction , Seasons , Virulence Factors/genetics , Water Microbiology , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...