Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 35(10): 2784-2798, 2021 10.
Article in English | MEDLINE | ID: mdl-34131282

ABSTRACT

The most frequent genetic alteration in acute myeloid leukemia (AML) is the mutation of nucleophosmin 1 (NPM1). Yet, its downstream oncogenic routes are not fully understood. Here, we report the identification of one long noncoding RNA (lncRNA) overexpressed in NPM1-mutated AML patients (named LONA) whose intracellular localization inversely reflects that of NPM1. While NPM1 is nuclear and LONA cytoplasmic in wild-type NPM1 AML cells, LONA becomes nuclear as mutant NPM1 moves toward the cytoplasm. Gain or loss of function combined with a genome-wide RNA-seq search identified a set of LONA mRNA targets encoding proteins involved in myeloid cell differentiation (including THSB1, MAFB, and ASB2) and interaction with its microenvironment. Consistently, LONA overexpression in mutant NPM1 established cell lines and primary AML cells exerts an anti-myeloid differentiation effect, whilst it exerts an opposite pro-myeloid differentiation effect in a wild type NPM1 setting. In vivo, LONA overexpression acts as an oncogenic lncRNA reducing the survival of mice transplanted with AML cells and rendering AML tumors more resistant to AraC chemotherapy.These data indicate that mutation-dependent nuclear export of NPM1 leads to nuclear retention and consequent oncogenic functions of the overexpressed lncRNA LONA, thus uncovering a novel NPM1 mutation-dependent pathway in AML pathogenesis.


Subject(s)
Active Transport, Cell Nucleus/genetics , Cell Nucleus/genetics , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Nuclear Proteins/genetics , RNA, Long Noncoding/genetics , Animals , Carcinogenesis/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cytoplasm/genetics , Gene Expression Regulation, Leukemic/genetics , HL-60 Cells , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Nucleophosmin , RNA, Messenger/genetics , Tumor Microenvironment/genetics
2.
J Exp Med ; 215(3): 911-926, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29439001

ABSTRACT

Developmental genes contribute to cancer, as reported for the homeobox gene Cdx2 playing a tumor suppressor role in the gut. In this study, we show that human colon cancers exhibiting the highest reduction in CDX2 expression belong to the serrated subtype with the worst evolution. In mice, mosaic knockout of Cdx2 in the adult intestinal epithelium induces the formation of imperfect gastric-type metaplastic lesions. The metaplastic knockout cells do not spontaneously become tumorigenic. However, they induce profound modifications of the microenvironment that facilitate the tumorigenic evolution of adjacent Cdx2-intact tumor-prone cells at the surface of the lesions through NF-κB activation, induction of inducible nitric oxide synthase, and stochastic loss of function of Apc This study presents a novel paradigm in that metaplastic cells, generally considered as precancerous, can induce tumorigenesis from neighboring nonmetaplastic cells without themselves becoming cancerous. It unveils the novel property of non-cell-autonomous tumor suppressor gene for the Cdx2 gene in the gut.


Subject(s)
CDX2 Transcription Factor/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Animals , Cecum/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Heterozygote , Humans , Intestines/pathology , Metaplasia , Mice , NF-kappa B/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nitric Oxide Synthase Type II/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Microenvironment
3.
Haematologica ; 102(10): 1718-1726, 2017 10.
Article in English | MEDLINE | ID: mdl-28679652

ABSTRACT

Long non-coding RNAs are defined as transcripts larger than 200 nucleotides but without protein-coding potential. There is growing evidence of the important role of long non-coding RNAs in cancer initiation, development and progression. In this study, we sought to evaluate the long non-coding RNA expression profile of patients with cytogenetically normal acute myeloid leukemia (AML). RNA-sequencing of 40 cytogenetically normal AML patients allowed us to quantify 11,036 long non-coding RNAs. Among these, more than 8000 were previously undescribed long non-coding RNAs. Using unsupervised analysis, we observed a specific long non-coding RNA expression profile dependent on the mutational status of the NPM1 gene. Statistical analysis allowed us to identify a minimal set of 12 long non-coding RNAs capable of discriminating NPM1-mutated from NPM1-wild-type patients. These results were validated by qRT-PCR on an independent cohort composed of 134 cytogenetically normal AML patients. Furthermore, we have identified one putative biomarker, the long non-coding RNA XLOC_109948 whose expression pattern predicts clinical outcome. Interestingly, low XLOC_109948 expression indicates a good prognosis especially for NPM1-mutated patients. Transient transfection of GapmeR against XLOC_109948 in NPM1-mutated OCI-AML3 cell line treated with Ara-C or ATRA enhances apoptosis suggesting XLOC_109948 plays a role in drug sensitivity. This study improves our knowledge of the long non-coding RNA transcriptome in cytogenetically normal AML patients. We observed a distinct long non-coding RNA expression profile in patients with the NPM1 mutation. The newly identified XLOC_109948 long non-coding RNA emerged as a strong prognostic factor able to better stratify NPM1-mutated patients.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Nuclear Proteins/genetics , RNA, Long Noncoding/genetics , Transcriptome , Apoptosis/genetics , Biomarkers , Cell Line, Tumor , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Humans , Karyotype , Leukemia, Myeloid, Acute/mortality , Nucleophosmin , Prognosis , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...