Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
mSystems ; 9(6): e0001224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38742876

ABSTRACT

In arthropod-associated microbial communities, insect-specific viruses (ISVs) are prevalent yet understudied due to limited infectivity outside their natural hosts. However, ISVs might play a crucial role in regulating mosquito populations and influencing arthropod-borne virus transmission. Some studies have indicated a core virome in mosquitoes consisting of mostly ISVs. Employing single mosquito metagenomics, we comprehensively profiled the virome of native and invasive mosquito species in Belgium. This approach allowed for accurate host species determination, prevalence assessment of viruses and Wolbachia, and the identification of novel viruses. Contrary to our expectations, no abundant core virome was observed in Culex mosquitoes from Belgium. In that regard, we caution against rigidly defining mosquito core viromes and encourage nuanced interpretations of other studies. Nonetheless, our study identified 45 viruses of which 28 were novel, enriching our understanding of the mosquito virome and ISVs. We showed that the mosquito virome in this study is species-specific and less dependent on the location where mosquitoes from the same species reside. In addition, because Wolbachia has previously been observed to influence arbovirus transmission, we report the prevalence of Wolbachia in Belgian mosquitoes and the detection of several Wolbachia mobile genetic elements. The observed prevalence ranged from 83% to 92% in members from the Culex pipiens complex.IMPORTANCECulex pipiens mosquitoes are important vectors for arboviruses like West Nile virus and Usutu virus. Virome studies on individual Culex pipiens, and on individual mosquitoes in general, have been lacking. To mitigate this, we sequenced the virome of 190 individual Culex and 8 individual Aedes japonicus mosquitoes. We report the lack of a core virome in these mosquitoes from Belgium and caution the interpretation of other studies in this light. The discovery of new viruses in this study will aid our comprehension of insect-specific viruses and the mosquito virome in general in relation to mosquito physiology and mosquito population dynamics.


Subject(s)
Culex , Virome , Wolbachia , Animals , Culex/virology , Culex/microbiology , Virome/genetics , Wolbachia/genetics , Wolbachia/isolation & purification , Belgium , Species Specificity , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Metagenomics , Insect Viruses/genetics , Insect Viruses/isolation & purification , Climate
2.
Pathogens ; 13(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535607

ABSTRACT

Using a metagenomic sequencing approach on stool samples from children with Acute Flaccid Paralysis (AFP), we describe the genetic diversity of Sapoviruses (SaVs) in children in Nigeria. We identified six complete genome sequences and two partial genome sequences. Several SaV genogroups and genotypes were detected, including GII (GII.4 and GII.8), GIV (GIV.1), and GI (GI.2 and GI.7). To our knowledge, this is the first description of SaV infections and complete genomes from Nigeria. Pairwise identity and phylogenetic analysis showed that the Nigerian SaVs were related to previously documented gastroenteritis outbreaks with associated strains from China and Japan. Minor variations in the functional motifs of the nonstructural proteins NS3 and NS5 were seen in the Nigerian strains. To adequately understand the effect of such amino acid changes, a better understanding of the biological function of these proteins is vital. The identification of distinct SaVs reinforces the need for robust surveillance in acute gastroenteritis (AGE) and non-AGE cohorts to better understand SaVs genotype diversity, evolution, and its role in disease burden in Nigeria. Future studies in different populations are, therefore, recommended.

3.
Trends Parasitol ; 40(3): 201-202, 2024 03.
Article in English | MEDLINE | ID: mdl-38185596
4.
Microbiol Resour Announc ; 12(10): e0055623, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37712673

ABSTRACT

We report the sequences of four complete genomes of parvovirus B19, extracted from human amniotic fluid specimens collected from pregnant women with abnormal ultrasound features in France. The genome sequences are 5,596 nucleotides long and include long terminal repeats. Several amino acid substitutions were observed in nonstructural protein (NS1).

5.
Microbiol Spectr ; : e0025523, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37724866

ABSTRACT

Marine macroalgae (seaweeds) are important primary producers and foundation species in coastal ecosystems around the world. Seaweeds currently contribute to an estimated 51% of the global mariculture production, with a long-term growth rate of 6% per year, and an estimated market value of more than US$11.3 billion. Viral infections could have a substantial impact on the ecology and aquaculture of seaweeds, but surprisingly little is known about virus diversity in macroalgal hosts. Using metagenomic sequencing, we characterized viral communities associated with healthy and bleached specimens of the commercially important green seaweed Ulva. We identified 20 putative new and divergent viruses, of which the majority belonged to the Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses [single-stranded (ss)DNA genomes], Durnavirales [double-stranded (ds)RNA], and Picornavirales (ssRNA). Other newly identified RNA viruses were related to the Ghabrivirales, the Mitoviridae, and the Tombusviridae. Bleached Ulva samples contained particularly high viral read numbers. While reads matching assembled CRESS DNA viruses and picorna-like viruses were nearly absent from the healthy Ulva samples (confirmed by qPCR), they were very abundant in the bleached specimens. Therefore, bleaching in Ulva could be caused by one or a combination of the identified viruses but may also be the result of another causative agent or abiotic stress, with the viruses simply proliferating in already unhealthy seaweed tissue. This study highlights how little we know about the diversity and ecology of seaweed viruses, especially in relation to the health and diseases of the algal host, and emphasizes the need to better characterize the algal virosphere. IMPORTANCE Green seaweeds of the genus Ulva are considered a model system to study microbial interactions with the algal host. Remarkably little is known, however, about viral communities associated with green seaweeds, especially in relation to the health of the host. In this study, we characterized the viral communities associated with healthy and bleached Ulva. Our findings revealed the presence of 20 putative novel viruses associated with Ulva, encompassing both DNA and RNA viruses. The majority of these viruses were found to be especially abundant in bleached Ulva specimens. This is the first step toward understanding the role of viruses in the ecology and aquaculture of this green seaweed.

6.
PLoS Negl Trop Dis ; 17(9): e0011649, 2023 09.
Article in English | MEDLINE | ID: mdl-37729233

ABSTRACT

BACKGROUND: West Nile virus (WNV) and Usutu virus (USUV) are emerging arthropod-borne viruses (arboviruses) in Europe transmitted by Culex mosquitoes. In Belgium, it is currently unknown which Culex species are competent vectors for WNV or USUV and if these mosquitoes carry Wolbachia, an endosymbiotic bacterium that can block arbovirus transmission. The aims of our study were to measure the vector competence of Belgian Culex mosquitoes to WNV and USUV and determine if a naturally acquired Wolbachia infection can influence virus transmission. METHODOLOGY/PRINCIPAL FINDINGS: Female Culex mosquitoes were captured from urban and peri-urban sites in Leuven, Belgium and offered an infectious bloodmeal containing WNV lineage 2, USUV European (EU) lineage 3, or USUV African (AF) lineage 3. Blood-fed females were incubated for 14 days at 25°C after which the body, head, and saliva were collected to measure infection, dissemination, and transmission rates as well as transmission efficiency. Mosquito species were identified by qRT-PCR or Sanger sequencing, the presence of infectious virus in mosquitoes was confirmed by plaque assays, and viral genome copies were quantified by qRT-PCR. Culex pipiens pipiens were able to transmit WNV (4.3% transmission efficiency, n = 2/47) but not USUV (EU lineage: n = 0/56; AF lineage: n = 0/37). In contrast, Culex modestus were able to transmit USUV (AF lineage: 20% transmission efficiency, n = 1/5) but not WNV (n = 0/6). We found that the presence or absence of Wolbachia was species-dependent and did not associate with virus transmission. CONCLUSIONS/SIGNIFICANCE: This is the first report that Belgian Culex mosquitoes can transmit both WNV and USUV, forewarning the risk of human transmission. More research is needed to understand the potential influence of Wolbachia on arbovirus transmission in Culex modestus mosquitoes.


Subject(s)
Arboviruses , Culex , Culicidae , Flavivirus , West Nile Fever , West Nile virus , Animals , Female , Humans , West Nile virus/genetics , Belgium , Flavivirus/genetics , Mosquito Vectors
8.
F1000Res ; 12: 1262, 2023.
Article in English | MEDLINE | ID: mdl-38439783

ABSTRACT

Background: A high prevalence of onchocerciasis-associated epilepsy (OAE) has been observed in onchocerciasis-endemic areas with high ongoing Onchocerca volvulus transmission. However, the pathogenesis of OAE remains to be elucidated. We hypothesise that the O. volvulus virome could be involved in inducing epilepsy. With this study, we aim to describe the O. volvulus virome and identify potential neurotropic viruses linked to OAE. Methods: In Maridi County, an onchocerciasis endemic area in South Sudan with a high prevalence of OAE, we will conduct an exploratory case-control study enrolling 40 persons aged 12 years and above with palpable onchocerciasis nodules. Cases will be participants with OAE (n=20), who will be age- and village-matched with controls without epilepsy (n=20). For each study participant, two skin snips at the iliac crest will be obtained to collect O. volvulus microfilariae, and one nodulectomy will be performed to obtain adult worms. A viral metagenomic study will be conducted on microfilariae and adult worms, and the O. volvulus virome of persons with and without OAE will be compared. The number, size, and localisation of onchocerciasis nodules in persons with and without OAE will be described. Moreover, the pre- and post-nodulectomy frequency of seizures in persons with OAE will be compared. Ethics and dissemination: The protocol has been approved by the Ethics Committee of the University of Antwerp and the Ministry of Health of South Sudan. Findings will be disseminated nationally and internationally via meetings and peer-reviewed publications. Registration: ClinicalTrials.gov registration NCT05868551 ( https://clinicaltrials.gov/study/NCT05868551). Protocol version: 1.1, dated 09/05/2023.


Subject(s)
Epilepsy , Intestinal Volvulus , Onchocerca volvulus , Onchocerciasis , Adult , Animals , Humans , Onchocerciasis/complications , Onchocerciasis/epidemiology , Case-Control Studies , Intestinal Volvulus/complications , Microfilariae
9.
Sci Rep ; 12(1): 21658, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522388

ABSTRACT

Viruses are the most abundant components of the human gut microbiome with a significant impact on health and disease. The effects of human immunodeficiency virus (HIV) infection on gut virome has been scarcely analysed. Several studies suggested that integrase strand transfers inhibitors (INSTIs) are associated with a healthier gut. Thus, the objective of this work was to evaluate the effects of HIV infection and INSTIs on gut virome composition. 26 non-HIV-infected volunteers, 15 naive HIV-infected patients and 15 INSTIs-treated HIV-infected patients were recruited and their gut virome composition was analysed using shotgun sequencing. Bacteriophages were the most abundant and diverse viruses present in gut. HIV infection was accompanied by a decrease in phage richness which was reverted after INSTIs-based treatment. ß-diversity of phages revealed that samples from HIV-infected patients clustered separately from those belonging to the control group. Differential abundant analysis showed an increase in phages belonging to Caudoviricetes class in the naive group and a decrease of Malgrandaviricetes class phages in the INSTIs-treated group compared to the control group. Besides, it was observed that INSTIs-based treatment was not able to reverse the increase of lysogenic phages associated with HIV infection or to modify the decrease observed on the relative abundance of Proteobacteria-infecting phages. Our study describes for the first time the impact of HIV and INSTIs on gut virome and demonstrates that INSTIs-based treatments are able to partially restore gut dysbiosis at the viral level, which opens several opportunities for new studies focused on microbiota-based therapies.


Subject(s)
Bacteriophages , HIV Infections , HIV Integrase Inhibitors , HIV Integrase , Viruses , Humans , HIV Infections/drug therapy , Virome , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , Dysbiosis/drug therapy , Integrases
10.
mBio ; 13(5): e0102122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36069449

ABSTRACT

Mosquitoes are important vectors for many arboviruses. It is becoming increasingly clear that various symbiotic microorganisms (including bacteria and insect-specific viruses; ISVs) in mosquitoes have the potential to modulate the ability of mosquitoes to transmit arboviruses. In this study, we compared the bacteriome and virome (both eukaryotic viruses and bacteriophages) of female adult Aedes aegypti and Culex quinquefasciatus mosquitoes fed with sucrose/water, blood, or blood spiked with Zika virus (ZIKV) or West Nile virus (WNV), respectively. Furthermore, we investigated associations between the microbiota and vector competence. We show that the influence of arboviruses on the mosquito microbiome-and vice versa-is distinct for each combination of arbovirus/mosquito species. The presence of ZIKV resulted in a temporarily increased Aedes ISV diversity. However, this effect was distinct for different ISVs: some ISVs decreased following the blood meal (Aedes aegypti totivirus), whereas other ISVs increased only when the blood contained ZIKV (Guadeloupe mosquito virus). Also, the diversity of the Aedes bacteriome depended on the diet and the presence of ZIKV, with a lower diversity observed for mosquitoes receiving blood without ZIKV. In Cx. quinquefasciatus, some ISVs increased in WNV-infected mosquitoes (Guadeloupe Culex tymo-like virus). Particularly, the presence of Wenzhou sobemo-like virus 3 (WSLV3) was associated with the absence of infectious WNV in mosquito heads, suggesting that WSLV3 might affect vector competence for WNV. Distinct profiles of bacteriophages were identified in Culex mosquitoes depending on diet, despite the lack of clear changes in the bacteriome. Overall, our data demonstrate a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus-mosquito combinations. A better understanding of these interactions may lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures. IMPORTANCE In this study, we first utilized the single mosquito microbiome analysis, demonstrating a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus-mosquito combinations. Some of the previously described "core virus" increased in the mosquitos receiving viral blood meal, like Guadeloupe mosquito virus and Guadeloupe Culex tymo-like virus, suggesting their potential roles in ZIKV and WNV infection. Notably, Wenzhou sobemo-like virus 3 was associated with the absence of infectious WNV in heads of Culex mosquitoes, which might affect vector competence for WNV. A better understanding of these interactions will lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures.


Subject(s)
Aedes , Arboviruses , Culex , Microbiota , Viruses , West Nile virus , Zika Virus Infection , Zika Virus , Humans , Animals , Female , Mosquito Vectors , Bacteria , Sucrose , Water
11.
J Med Entomol ; 59(6): 2072-2079, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36130161

ABSTRACT

The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Animals , Pyrethrins/pharmacology , Belgium , Organophosphates/pharmacology , Acetylcholinesterase/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mutation
12.
mSystems ; 6(5): e0038221, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34665009

ABSTRACT

Gut viruses are important, yet often neglected, players in the complex human gut microbial ecosystem. Recently, the number of human gut virome studies has been increasing; however, we are still only scratching the surface of the immense viral diversity. In this study, 254 virus-enriched fecal metagenomes from 204 Danish subjects were used to generate the Danish Enteric Virome Catalog (DEVoC) containing 12,986 nonredundant viral scaffolds, of which the majority was previously undescribed, encoding 190,029 viral genes. The DEVoC was used to compare 91 healthy DEVoC gut viromes from children, adolescents, and adults that were used to create the DEVoC. Gut viromes of healthy Danish subjects were dominated by phages. While most phage genomes (PGs) only occurred in a single subject, indicating large virome individuality, 39 PGs were present in more than 10 healthy subjects. Among these 39 PGs, the prevalences of three PGs were associated with age. To further study the prevalence of these 39 prevalent PGs, 1,880 gut virome data sets of 27 studies from across the world were screened, revealing several age-, geography-, and disease-related prevalence patterns. Two PGs also showed a remarkably high prevalence worldwide-a crAss-like phage (20.6% prevalence), belonging to the tentative AlphacrAssvirinae subfamily, and a previously undescribed circular temperate phage infecting Bacteroides dorei (14.4% prevalence), called LoVEphage because it encodes lots of viral elements. Due to the LoVEphage's high prevalence and novelty, public data sets in which the LoVEphage was detected were de novo assembled, resulting in an additional 18 circular LoVEphage-like genomes (67.9 to 72.4 kb). IMPORTANCE Through generation of the DEVoC, we added numerous previously uncharacterized viral genomes and genes to the ever-increasing worldwide pool of human gut viromes. The DEVoC, the largest human gut virome catalog generated from consistently processed fecal samples, facilitated the analysis of the 91 healthy Danish gut viromes. Characterizing the biggest cohort of healthy gut viromes from children, adolescents, and adults to date confirmed the previously established high interindividual variation in human gut viromes and demonstrated that the effect of age on the gut virome composition was limited to the prevalence of specific phage (groups). The identification of a previously undescribed prevalent phage illustrates the usefulness of developing virome catalogs, and we foresee that the DEVoC will benefit future analysis of the roles of gut viruses in human health and disease.

13.
mSphere ; 6(2)2021 04 21.
Article in English | MEDLINE | ID: mdl-33883261

ABSTRACT

Culex modestus mosquitoes are considered potential transmission vectors of West Nile virus and Usutu virus. Their presence has been reported across several European countries, including one larva detected in Belgium in 2018. In this study, mosquitoes were collected in the city of Leuven and surrounding areas in the summers of 2019 and 2020. Species identification was performed based on morphological features and partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene. The 107 mosquitoes collected in 2019 belonged to eight mosquito species, Culex pipiens (24.3%), Cx. modestus (48.6%), Cx. torrentium (0.9%), Culiseta annulata (0.9%), Culiseta morsitans (0.9%), Aedes sticticus (14.0%), Aedes cinereus (9.3%), and Anopheles plumbeus (0.9%), suggesting the presence of an established Cx. modestus population in Belgium. The collection of Cx. modestus mosquitoes at the same locations in 2020 confirmed their establishment in the region. Haplotype network analysis of the COI sequences for Cx. modestus showed that the Belgian population is rather diverse, suggesting that it may have been established in Belgium for some time. The Belgian Cx. modestus population was most closely related to populations from the United Kingdom and Germany. Characterization of the virome of the collected mosquitoes resulted in the identification of at least 33 eukaryotic viral species. Nine (nearly) complete genomes belonging to 6 viral species were identified, all of which were closely related to known viruses. In conclusion, here, we report the presence of Cx. modestus in the surrounding areas of Leuven, Belgium. As this species is considered to be a vector of several arboviruses, the implementation of vector surveillance programs to monitor this species is recommended.IMPORTANCECulex modestus mosquitoes are considered to be a potential "bridge" vector, being able to transmit pathogens between birds as well as from birds to mammals, including humans. In Belgium, this mosquito species was considered absent until the finding of one larva in 2018 and subsequent evidence of a large population in 2019 to 2020 described here. We collected mosquitoes in the summers of 2019 and 2020 in the city of Leuven and surrounding areas. The mosquito species was identified by morphological and molecular methods, demonstrating the presence of Cx. modestus in this region. The ability of mosquitoes to transmit pathogens can depend on several factors, one of them being their natural virus composition. Therefore, we identified the mosquito-specific viruses harbored by Belgian mosquitoes. As Cx. modestus is able to transmit viruses such as West Nile virus and Usutu virus, the establishment of this mosquito species may increase the risk of virus transmission in the region. It is thus advisable to implement mosquito surveillance programs to monitor this species.


Subject(s)
Culex/virology , Mosquito Vectors/virology , Virome/genetics , Viruses/genetics , Animals , Belgium , Culex/classification , Flavivirus/physiology , Seasons , Viruses/classification , Viruses/isolation & purification , West Nile virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...