Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 12(38): 19681-19688, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-32996531

ABSTRACT

Bottom-up approaches exploiting on-surface synthesis reactions allow atomic-scale precision in the fabrication of graphene nanoribbons (GNRs); this is essential for their technological applications since their unique electronic and optical properties are largely controlled by the specific edge structure. By means of a combined experimental-theoretical investigation of some prototype GNRs, we show here that high-resolution electron energy-loss spectroscopy (HREELS) can be successfully employed to fingerprint the details of the GNR edge structure. In particular, we demonstrate how the features of HREEL vibrational spectra - mainly dictated by edge CH out-of-plane modes - are unambiguously related to the GNR edge structure. Moreover, we single out those modes which are localized at the GNR termini and show how their relative intensity can be related to the average GNR length.

2.
J Am Chem Soc ; 140(25): 7803-7809, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29779378

ABSTRACT

Among organic electronic materials, graphene nanoribbons (GNRs) offer extraordinary versatility as next-generation semiconducting materials for nanoelectronics and optoelectronics due to their tunable properties, including charge-carrier mobility, optical absorption, and electronic bandgap, which are uniquely defined by their chemical structures. Although planar GNRs have been predominantly considered until now, nonplanarity can be an additional parameter to modulate their properties without changing the aromatic core. Herein, we report theoretical and experimental studies on two GNR structures with "cove"-type edges, having an identical aromatic core but with alkyl side chains at different peripheral positions. The theoretical results indicate that installment of alkyl chains at the innermost positions of the "cove"-type edges can "bend" the peripheral rings of the GNR through steric repulsion between aromatic protons and the introduced alkyl chains. This structural distortion is theoretically predicted to reduce the bandgap by up to 0.27 eV, which is corroborated by experimental comparison of thus synthesized planar and nonplanar GNRs through UV-vis-near-infrared absorption and photoluminescence excitation spectroscopy. Our results extend the possibility of engineering GNR properties, adding subtle structural distortion as a distinct and potentially highly versatile parameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...