Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005006

ABSTRACT

Testing shear-resisting plates in steel connections is one of the most challenging laboratory undertakings in steel construction, as the most common experimental layout design includes simulating the connection with its adjoining members. This significant hindrance gained particular magnitude as the need to test prototypes of topologically optimised shear cover plates became more pressing. Indeed, new code-compliant topology optimisation approaches for steel construction have recently been offered, and physically non-linear analyses have been demonstrated to be vital for assessing these elements. Hence, a rapid and reliable experimental process has become a fundamental necessity. To answer this need, a novel layout is herein proposed, in which topologically optimised and previously numerically examined bolted shear plates of a well-known steel joint were tested. The results allowed for the definition of the material trilinear model for use in subsequent numerical analysis, as well as the validation of the numerical simulation results. The discrepancy between the previously mathematically anticipated and empirically determined ultimate resistance did not exceed 1.7%.

2.
Materials (Basel) ; 15(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888388

ABSTRACT

Concrete is one of the most widespread materials in the civil engineering field due to its versatility for both structural and non-structural applications depending on the density range, competitiveness in terms of durability and manufacturing costs, as well as ease in finding raw constituent elements [...].

3.
Materials (Basel) ; 15(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683127

ABSTRACT

Design codes provide the necessary tools to check the torsional strength of reinforced concrete (RC) members. However, some researchers have pointed out that code equations still need improvement. This study presents a review and a comparative analysis of the calculation procedures to predict the torsional strength of RC beams from some reference design codes, namely the Russian, American, European, and Canadian codes for RC structures. The reliability and accuracy of the normative torsional strengths are checked against experimental results from a broad database incorporating 202 RC rectangular beams tested under pure torsion and collected from the literature. The results show that both the readability and accuracy of the codes' equations should be improved. Based on a correlation study between the experimental torsional strengths, and geometrical and mechanical properties of the beams, refined yet simple equations are proposed to predict torsional strength. It is demonstrated that the proposed formulation is characterized by a significant improvement over the reference design codes. The efficiency of the proposed formulae is also assessed against another equation earlier proposed in the literature, and an improvement is noted as well. From the results, it can be concluded that the proposed equations in this study can contribute to a more accurate and economical design for practice.

4.
Materials (Basel) ; 14(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34501002

ABSTRACT

Bridges constitute important elements of the transportation network. A vast part of the Italian existing infrastructural system dates to around 60 years ago, which implies that the related bridge structures were constructed according to past design guidelines and underwent a probable state of material deterioration (e.g., steel corrosion, concrete degradation), especially in those cases in which proper maintenance plans have not been periodically performed over the structural lifetime. Consequently, elaborating rapid yet effective safety assessment strategies for existing bridge structures represents a topical research line. This contribution presents a systematic experimental-numerical approach for assessing the load-bearing capacity of existing prestressed concrete (PC) bridge decks. This methodology is applied to the Longano PC viaduct (southern Italy) as a case study. Initially, natural frequencies and mode shapes of the bridge deck are experimentally identified from vibration data collected in situ through Operational Modal Analysis (OMA), based on which a numerical finite element (FE) model is developed and calibrated. In situ static load tests are then carried out to investigate the static deflections under maximum allowed serviceability loads, which are compared to values provided by the FE model for further validation. Since prestressing strands appear corroded in some portions of the main girders, numerical static nonlinear analysis with a concentrated plasticity approach is finally conducted to quantify the effects of various corrosion scenarios on the resulting load-bearing capacity of the bridge at ultimate limit states. The proposed methodology, encompassing both serviceability and ultimate conditions, can be used to identify critical parts of a large infrastructure network prior to performing widespread and expensive material test campaigns, to gain preliminary insight on the structural health of existing bridges and to plan a priority list of possible repairing actions in a reasonable, safe, and costly effective manner.

5.
Sensors (Basel) ; 21(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562171

ABSTRACT

Digital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate. This represents a widespread strengthening technique of existing reinforced concrete structures, but its effectiveness is strongly related to the bond behavior between composite fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different environmental conditions (humidity and temperature) and finally tested up to failure under three-point bending. Mechanical tests are carried out vis-à-vis DIC measurements using two distinct cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-concrete interface. This experimental setup makes it possible to interpret the mechanical behavior and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface obtained by DIC in the pre- and postcracking phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...