Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1215684, 2023.
Article in English | MEDLINE | ID: mdl-37700749

ABSTRACT

Introduction: SLC6A1 pathogenic variants have been associated with epilepsy and neurodevelopmental disorders. The clinical phenotype includes different seizure types, intellectual disability, and psychiatric symptoms affecting mood and behavior. Few data regarding neuropsychological features have been described, and details on cognitive profiles are often missing due to the lack of standardized tests. Methods: We retrospectively reviewed the neuropsychological assessments of five subjects carrying heterozygous missense genetic variants in SLC6A1. We also collected data on epileptic features, EEGs, and brain MRIs. Additionally, we reviewed neuropsychological data from 204 previously reported patients with SLC6A1 pathogenic variants. Results: In our series, at the last evaluation (median 12.6 years), three patients had borderline intellectual functioning, one patient had mild cognitive impairment, and one patient presented with a moderate cognitive disability. Three out of five patients underwent at least two neuropsychological evaluations, which revealed a worsening of cognitive functions over time. We detected attention deficits in all patients. In addition, we observed anxiety, disruptive behavior disorder, emotional instability, and hetero aggressiveness. We also performed a literature review that highlighted that most of the patients with SLC6A1 pathogenic variants have mild-to-moderate intellectual disability and that one-third of cases have autistic traits. Discussion: Based on the literature review and the detailed description of our cases, we conclude that patients with SLC6A1-related epilepsy mostly present with mild-to-moderate intellectual disability, often associated with attention disorders. Such symptoms may worsen over time. Periodic standardized neuropsychological tests may be useful tools to follow development over time, and patient-specific rehabilitation programs could be tailored consistently.

2.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Article in English | MEDLINE | ID: mdl-36779245

ABSTRACT

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Subject(s)
Brain Diseases , Epileptic Syndromes , Spasms, Infantile , Humans , Brain Diseases/genetics , Spasms, Infantile/diagnostic imaging , Spasms, Infantile/genetics , Spasms, Infantile/complications , Seizures/diagnostic imaging , Seizures/genetics , Seizures/complications , Brain/pathology , Epileptic Syndromes/complications , Electroencephalography , Spasm , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
3.
Seizure ; 101: 211-217, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36087421

ABSTRACT

PURPOSE: Mutations in the MED13 gene are reported in the literature in association with clinically variable, neurodevelopmental disorders, which are characterized by mild-to-severe intellectual disability, autism spectrum disorder, attention deficit/hyperactivity disorder, epilepsy, ocular or skeletal abnormalities, congenital cardiac defects, and facial dysmorphisms. Here, we report a patient with an epileptic phenotype carrying a novel missense mutation characterized by developmental and epileptic encephalopathy with infantile spasms. METHODS: Through trio-based WES, we identified a novel de novo heterozygous missense variant c.2501A>G in the MED13 gene. We reviewed all medical charts of the present patient and reviewed all previously reported cases with pathogenic variants of MED13. RESULTS: This study involves a 24-month-old boy with epilepsy onset at the age of 3 months with drug-resistant focal seizures followed by infantile spasms at the age of 10 months. He had a severe, developmental delay along with microcephaly and dysmorphic features. From a literature review, it emerged that epilepsy is described in only one out of nineteen of previously reported patients with a phenotype of generalized, drug-resistant epilepsy with myoclonic-atonic seizures. Microcephaly, developmental delay, hypotonia, corpus callosum abnormalities, deafness, and retinal atrophy were common features in the previously described cases. CONCLUSION: This case expands the genetic landscape of infantile spasms as well as the phenotype of MED13-related disorders adding the electroclinical features of early-onset developmental and epileptic encephalopathy with infantile spasms to the previously described, generalized epilepsy with myoclonic-atonic seizures.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Intellectual Disability , Microcephaly , Spasms, Infantile , Autism Spectrum Disorder/complications , Epilepsy/complications , Epilepsy/genetics , Humans , Intellectual Disability/complications , Male , Mediator Complex/genetics , Microcephaly/complications , Mutation/genetics , Phenotype , Seizures/complications , Spasms, Infantile/complications , Spasms, Infantile/genetics
4.
Eur J Med Genet ; 65(9): 104570, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35850153

ABSTRACT

In past decades, the identification of genes involved in epileptic disorders has grown exponentially. The pace of gene identification in epileptic disorders began to accelerate in the late 2000s, driven by new technologies such as molecular cytogenetics and next-generation sequencing (NGS). These technologies have also been applied to genetic diagnostics, with different configurations, such as gene panels, whole-exome sequencing and whole-genome sequencing. The clinician must be aware that any technology has its limitations and complementary techniques must still be used to establish a diagnosis for specific diseases. In addition, increasing the amount of genetic information available in a larger patient sample also increases the need for rigorous interpretation steps, when taking into account the clinical, electroclinical, and when available, functional data. Local, multidisciplinary discussions have proven valuable in difficult diagnostic situations, especially in cases where precision medicine is being considered. They also serve to improve genetic counseling in complex situations. In this article, we will briefly review the genetic basis of rare and common epilepsies, the current strategies used for molecular diagnosis, including their limitations, and some pitfalls for data interpretation, in the context of etiological diagnosis and genetic counseling.


Subject(s)
Epilepsy , Genetic Testing , Epilepsy/diagnosis , Epilepsy/genetics , Genetic Counseling , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Exome Sequencing
5.
Acta Myol ; 39(4): 320-335, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33458588

ABSTRACT

LMNA gene encodes for lamin A/C, attractive proteins linked to nuclear structure and functions. When mutated, it causes different rare diseases called laminopathies. In particular, an Arginine change in Histidine in position 527 (p.Arg527His) falling in the C-terminal domain of lamin A precursor form (prelamin A) causes mandibuloacral dysplasia Type A (MADA), a segmental progeroid syndrome characterized by skin, bone and metabolic anomalies. The well-characterized cellular models made difficult to assess the tissue-specific functions of 527His prelamin A. Here, we describe the generation and characterization of a MADA transgenic mouse overexpressing 527His LMNA gene, encoding mutated prelamin A. Bodyweight is slightly affected, while no difference in lifespan was observed in transgenic animals. Mild metabolic anomalies and thinning and loss of hairs from the back were the other observed phenotypic MADA manifestations. Histological analysis of tissues relevant for MADA syndrome revealed slight increase in adipose tissue inflammatory cells and a reduction of hypodermis due to a loss of subcutaneous adipose tissue. At cellular levels, transgenic cutaneous fibroblasts displayed nuclear envelope aberrations, presence of prelamin A, proliferation, and senescence rate defects. Gene transcriptional pattern was found differentially modulated between transgenic and wildtype animals, too. In conclusion, the presence of 527His Prelamin A accumulation is further linked to the appearance of mild progeroid features and metabolic disorder without lifespan reduction.


Subject(s)
Acro-Osteolysis/etiology , Acro-Osteolysis/metabolism , Disease Models, Animal , Lamin Type A/genetics , Lipodystrophy/etiology , Lipodystrophy/metabolism , Mandible/abnormalities , Mutation/genetics , Skin/pathology , Acro-Osteolysis/pathology , Animals , Female , Lipodystrophy/pathology , Male , Mandible/metabolism , Mandible/pathology , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...