Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 124(Pt 2): 137-43, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11862992

ABSTRACT

An ATP diphosphohydrolase was identified in the plasma membranes isolated from promastigote forms of Leishmania amazonensis. Both ATP and ADP were hydrolysed at similar rates by the enzyme. Other nucleotides such as UTP, GTP and CTP were also degraded, revealing a broad substrate specificity. Adding ATP and ADP simultaneously, the amount of hydrolysis achieved was compatible with the presence of a single enzyme. ATPase activity was not affected by addition of vanadate, ouabain, thapsigargin, dicyclohexylcarbodiimide, oligomycin and bafilomycin A, thus excluding involvement of P-, F- and V-type ATPases. The effects of pH in the range 6.5-8.5 were examined using ATP or p-NPP as substrate. At pH 7.4, the phosphatase activity decreased, and did not show a significant contribution to ATP hydrolysis. In addition, the enzyme was not inhibited by levamisole and ammonium molybdate, excluding alkaline phosphatase and nucleotidase activities, respectively. Sodium azide (5-10 mM) caused inhibition of the ATP and ADP hydrolysis in a dose-dependent manner. Calcium was the best activating metal ion for both ATPase and ADPase activities. Ultrastructural cytochemical microscopy showed ATP diphosphohydrolase on the surface and flagellar pocket of the parasite. We have proposed that L. amazonensis ATP diphosphohydrolase may participate in the salvage pathway of nucleosides.


Subject(s)
Apyrase/metabolism , Leishmania/enzymology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Apyrase/antagonists & inhibitors , Apyrase/isolation & purification , Calcium/chemistry , Cell Membrane/enzymology , Cell Membrane/ultrastructure , Enzyme Inhibitors/pharmacology , Female , Hydrogen-Ion Concentration , Leishmania/ultrastructure , Levamisole/pharmacology , Mice , Mice, Inbred BALB C , Microscopy, Electron , Molybdenum/chemistry , Sodium Azide/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...