Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Environ Pollut ; 343: 123233, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159628

ABSTRACT

We investigated microplastic (MP) contamination in 16 commonly-consumed protein products (seafoods, terrestrial meats, and plant-based proteins) purchased in the United States (U.S.) with different levels of processing (unprocessed, minimally-processed, and highly-processed), brands (1 - 4 per product type, depending on availability) and store types (conventional supermarket and grocer featuring mostly natural/organic products). Mean (±stdev) MP contamination per serving among the products was 74 ± 220 particles (ranging from 2 ± 2 particles in chicken breast to 370 ± 580 in breaded shrimp). Concentrations (MPs/g tissue) differed between processing levels, with highly-processed products containing significantly more MPs than minimally-processed products (p = 0.0049). There were no significant differences among the same product from different brands or store types. Integrating these results with protein consumption data from the American public, we estimate that the mean annual exposure of adults to MPs in these proteins is 11,000 ± 29,000 particles, with a maximum estimated exposure of 3.8 million MPs/year. These findings further inform estimations of human exposure to MPs, particularly from proteins which are important dietary staples in the U.S. Subsequent research should investigate additional drivers of MPs in the human diet, including other understudied food groups sourced from both within and outside the U.S.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adult , Humans , United States , Plastics , Water Pollutants, Chemical/analysis , Diet , Seafood/analysis , Plant Proteins , Environmental Monitoring/methods
2.
Environ Sci Technol ; 57(36): 13304-13312, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37638638

ABSTRACT

As the global plastics crisis grows, numerous technologies have been invented and implemented to recover plastic pollution from the environment. Although laudable, unregulated clean-up technologies may be inefficient and have unintended negative consequences on ecosystems, for example, through bycatch or removal of organic matter important for ecosystem functions. Despite these concerns, plastic clean-up technologies can play an important role in reducing litter in the environment. As the United Nations Environment Assembly is moving toward an international, legally binding treaty to address plastic pollution by 2024, the implementation of plastic clean-up technologies should be regulated to secure their net benefits and avoid unintended damages. Regulation can require environmental impact assessments and life cycle analysis to be conducted predeployment on a case-by-case basis to determine their effectiveness and impact and secure environmentally sound management. During operations catch-efficiency and bycatch of nonlitter items, as well as waste management of recovered litter, should be documented. Data collection for monitoring, research, and outreach to mitigate plastic pollution is recommended as added value of implementation of clean-up technologies.


Subject(s)
Ecosystem , Waste Management , Environmental Pollution/prevention & control , Plastics , Technology
3.
Chemosphere ; 334: 138875, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37187379

ABSTRACT

Previous studies have evaluated method performance for quantifying and characterizing microplastics in clean water, but little is known about the efficacy of procedures used to extract microplastics from complex matrices. Here we provided 15 laboratories with samples representing four matrices (i.e., drinking water, fish tissue, sediment, and surface water) each spiked with a known number of microplastic particles spanning a variety of polymers, morphologies, colors, and sizes. Percent recovery (i.e., accuracy) in complex matrices was particle size dependent, with ∼60-70% recovery for particles >212 µm, but as little as 2% recovery for particles <20 µm. Extraction from sediment was most problematic, with recoveries reduced by at least one-third relative to drinking water. Though accuracy was low, the extraction procedures had no observed effect on precision or chemical identification using spectroscopy. Extraction procedures greatly increased sample processing times for all matrices with the extraction of sediment, tissue, and surface water taking approximately 16, 9, and 4 times longer than drinking water, respectively. Overall, our findings indicate that increasing accuracy and reducing sample processing times present the greatest opportunities for method improvement rather than particle identification and characterization.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring
4.
Chemosphere ; 313: 137300, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36414038

ABSTRACT

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Microplastics/analysis , Plastics/analysis , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
5.
Chemosphere ; 310: 136772, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36220434

ABSTRACT

Chemical identification of microplastics is time-consuming, especially when particles are numerous. To save resources, a subsample of particles is often selected for chemical identification. Because no standard subsampling protocols currently exist, methods vary widely and often lack evidence of representativeness, limiting conclusions and cross-study comparability. In this study, we determine best practices for subsampling >100 µm microparticles for chemical identification based on two research objectives: 1) quantifying the proportion of plastic, anthropogenic and natural particles and 2) quantifying the diversity of material types. Using published datasets where all microparticles counted were chemically identified, we tested subsampling methods where particles are selected either from individual samples, or from a group of samples treated collectively. We determine that overall, particle selection at random provides a representative subsample with the lowest effort. Subsampling methods must also be informed by your research objective. Fewer particles are required to accurately represent the proportion of plastic, anthropogenic and natural particles present, compared to representing the diversity of material types. To accurately represent particle diversity, researchers must understand particle diversity within the environmental matrix in question which informs necessary sampling volume. Overall, harmonized, and representative subsampling practices will allow improved comparability among studies, transparent data reporting, and more robust conclusions.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
6.
Chemosphere ; 308(Pt 3): 136449, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115477

ABSTRACT

Microscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study. Twenty-two laboratories from six countries were provided three blind spiked clean water samples and asked to follow a standard operating procedure. The samples contained a known number of microplastics with different morphologies (fiber, fragment, sphere), colors (clear, white, green, blue, red, and orange), polymer types (PE, PS, PVC, and PET), and sizes (ranging from roughly 3-2000 µm), and natural materials (natural hair, fibers, and shells; 100-7000 µm) that could be mistaken for microplastics (i.e., false positives). Particle recovery was poor for the smallest size fraction (3-20 µm). Average recovery (±StDev) for all reported particles >50 µm was 94.5 ± 56.3%. After quality checks, recovery for >50 µm spiked particles was 51.3 ± 21.7%. Recovery varied based on morphology and color, with poorest recovery for fibers and the largest deviations for clear and white particles. Experience mattered; less experienced laboratories tended to report higher concentration and had a higher variance among replicates. Participants identified opportunity for increased accuracy and precision through training, improved color and morphology keys, and method alterations relevant to size fractionation. The resulting data informs future work, constraining and highlighting the value of microscopy for microplastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Humans , Microscopy , Plastics/analysis , Polymers , Polyvinyl Chloride/analysis , Water/analysis , Water Pollutants, Chemical/analysis
7.
Environ Sci Technol ; 56(13): 9367-9378, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35731673

ABSTRACT

Pathways for microplastics to aquatic ecosystems include agricultural runoff, urban runoff, and treated or untreated wastewater. To better understand the importance of each pathway as a vector for microplastics into waterbodies and for mitigation, we sampled agricultural runoff, urban stormwater runoff, treated wastewater effluent, and the waterbodies downstream in four regions across North America: the Sacramento Delta, the Mississippi River, Lake Ontario, and Chesapeake Bay. The highest concentrations of microplastics in each pathway varied by region: agricultural runoff in the Sacramento Delta and Mississippi River, urban stormwater runoff in Lake Ontario, and treated wastewater effluent in Chesapeake Bay. Material types were diverse and not unique across pathways. However, a PERMANOVA found significant differences in morphological assemblages among pathways (p < 0.005), suggesting fibers as a signature of agricultural runoff and treated wastewater effluent and rubbery fragments as a signature of stormwater. Moreover, the relationship between watershed characteristics and particle concentrations varied across watersheds (e.g., with agricultural parameters only being important in the Sacramento Delta). Overall, our results suggest that local monitoring is essential to inform effective mitigation strategies and that assessing the assemblages of morphologies should be prioritized in monitoring programs to identify important pathways of contamination.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Plastics , Wastewater , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 298: 134282, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35283150

ABSTRACT

California Senate Bill 1422 requires the development of State-approved standardized methods for quantifying and characterizing microplastics in drinking water. Accordingly, we led an interlaboratory microplastic method evaluation study, with 22 participating laboratories from six countries, to evaluate the performance of widely used methods: sample extraction via filtering/sieving, optical microscopy, FTIR spectroscopy, and Raman spectroscopy. Three spiked samples of simulated clean water and a laboratory blank were sent to each laboratory with a prescribed standard operating procedure for particle extraction, quantification, and characterization. The samples contained known amounts of microparticles within four size fractions (1-20 µm, 20-212 µm, 212-500 µm, >500 µm), four polymer types (PE, PS, PVC, and PET), and six colors (clear, white, green, blue, red, and orange). They also included false positives (natural hair, fibers, and shells) that may be mistaken for microplastics. Among laboratories, mean particle recovery using stereomicroscopy was 76% ± 10% (SE). For particles in the three largest size fractions, mean recovery was 92% ± 12% SD. On average, laboratory contamination from blank samples was 91 particles (± 141 SD). FTIR and Raman spectroscopy accurately identified microplastics by polymer type for 95% and 91% of particles analyzed, respectively. Per particle, FTIR spectroscopy required the longest time for analysis (12 min ± 9 SD). Participants demonstrated excellent recovery and chemical identification for particles greater than 50 µm in size, with opportunity for increased accuracy and precision through training and further method refinement. This work has informed methods and QA/QC for microplastics monitoring in drinking water in the State of California.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Drinking Water/analysis , Environmental Monitoring , Humans , Microplastics , Plastics , Polymers , Water Pollutants, Chemical/analysis
9.
Anal Chem ; 93(48): 15878-15885, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34813292

ABSTRACT

Raman spectral libraries specific to microplastics demonstrated improved spectral matching results when weathered plastics and a variety of particle colors and morphologies were included. Here, we explore if this is true for Fourier transform infrared (FTIR) spectroscopy as well. We present two novel databases specific to microplastics using attenuated total reflection (µATR-FTIR): (1) an FTIR library of plastic particles (FLOPP), containing 186 spectra from common plastic items, across 14 polymer types and (2) an FTIR library of plastic particles sourced from the environment (FLOPP-e), containing 195 spectra across 15 polymer types. Both libraries include particles from a variety of sources, morphologies, and colors. We demonstrate the applicability of these libraries for microplastics research by comparing spectral match results from two microplastic datasets. For this, we use different combinations of libraries including: commercially available reference libraries, an open-access polymer library, and FLOPP and FLOPP-e. Among tests, the greatest mean HQI result was achieved when the greatest number of libraries was included. This work demonstrates that spectral libraries specific to plastic particles found in the environment improve the accuracy of spectral matching and are best used in combination with commercial libraries containing chemical components that are commonly found within plastics and other anthropogenic particles. Multivariate principal component analyses of FLOPP and FLOPP-e spectra confirmed differences among polymer types and higher variation in principal component scores among weathered particles, but no patterns were observed among particle colors or morphologies. These results demonstrate that ATR-FTIR analyses are sensitive to weathering of plastics but not to particle color and morphology.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Fourier Analysis , Plastics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
10.
Anal Chem ; 93(21): 7543-7548, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34009953

ABSTRACT

Microplastic pollution research has suffered from inadequate data and tools for spectral (Raman and infrared) classification. Spectral matching tools often are not accurate for microplastics identification and are cost-prohibitive. Lack of accuracy stems from the diversity of microplastic pollutants, which are not represented in spectral libraries. Here, we propose a viable software solution: Open Specy. Open Specy is on the web (www.openspecy.org) and in an R package. Open Specy is free and allows users to view, process, identify, and share their spectra to a community library. Users can upload and process their spectra using smoothing (Savitzky-Golay filter) and polynomial baseline correction techniques (IModPolyFit). The processed spectrum can be downloaded to be used in other applications or identified using an onboard reference library and correlation-based matching criteria. Open Specy's data sharing and session log features ensure reproducible results. Open Specy houses a growing library of reference spectra, which increasingly represents the diversity of microplastics as a contaminant suite. We compared the functionality and accuracy of Open Specy for microplastic identification to commonly used spectral analysis software. We found that Open Specy was the only open source software and the only software with a community library, and Open Specy had comparable accuracy to popular software (OMNIC Picta and KnowItAll). Future developments will enhance spectral identification accuracy as the reference library and functionality grows through community-contributed spectra and community-developed code. Open Specy can also be used for applications beyond microplastic analysis. Open Specy's source code is open source (CC-BY-4.0, attribution only) (https://github.com/wincowgerDEV/OpenSpecy).


Subject(s)
Microplastics , Plastics , Algorithms , Software
11.
Environ Pollut ; 271: 116260, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360661

ABSTRACT

Microplastics are an emerging contaminant of high environmental concern due to their widespread distribution and availability to aquatic organisms. Filter-feeding organisms like bivalves have been identified as particularly susceptible to microplastics, and because of this, it has been suggested bivalves could be useful bioindicators of microplastic pollution in ecosystems. We sampled resident mussels and clams from five sites within San Francisco Bay for microplastics and other anthropogenic microparticles. Cages of depurated mussels (denoted transplants) were also deployed at four sites in the Bay for 90 days to investigate temporal uptake of microplastics and microparticles. Because microplastics can sorb PAHs, and thus may act as a source of these chemicals upon ingestion, transplant mussels and resident clams were also analyzed for PAHs. We found anthropogenic microparticles in all samples at all sites, some of which were identified as microplastics. There was no statistical difference between the mean number of microparticles found in resident and transplant species. There were significant site-specific differences among microparticle abundances in the Bay, with the highest abundances observed in the South Bay. No correlation was found between the number of microparticles and the sum concentrations of PAHs, priority PAHs, or any individual PAH, suggesting the chemical concentrations observed reflect broader chemical trends in the Bay rather than direct exposure through microplastic ingestion. The pattern of spatial distribution of microparticles in transplanted mussels matched that of sediment samples from the Bay, suggesting bivalves could be a useful bioindicator of microplastic abundances in sediment, but not surface water.


Subject(s)
Bivalvia , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Bays , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Polycyclic Aromatic Hydrocarbons/analysis , San Francisco , Water Pollutants, Chemical/analysis
12.
Science ; 369(6510): 1515-1518, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32943526

ABSTRACT

Plastic pollution is a planetary threat, affecting nearly every marine and freshwater ecosystem globally. In response, multilevel mitigation strategies are being adopted but with a lack of quantitative assessment of how such strategies reduce plastic emissions. We assessed the impact of three broad management strategies, plastic waste reduction, waste management, and environmental recovery, at different levels of effort to estimate plastic emissions to 2030 for 173 countries. We estimate that 19 to 23 million metric tons, or 11%, of plastic waste generated globally in 2016 entered aquatic ecosystems. Considering the ambitious commitments currently set by governments, annual emissions may reach up to 53 million metric tons per year by 2030. To reduce emissions to a level well below this prediction, extraordinary efforts to transform the global plastics economy are needed.


Subject(s)
Fresh Water/analysis , Plastics/analysis , Seawater/analysis , Waste Products/analysis , Water Pollution, Chemical/analysis , Environmental Monitoring , Waste Management
13.
Appl Spectrosc ; 74(9): 1066-1077, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32394727

ABSTRACT

The ubiquitous pollution of the environment with microplastics, a diverse suite of contaminants, is of growing concern for science and currently receives considerable public, political, and academic attention. The potential impact of microplastics in the environment has prompted a great deal of research in recent years. Many diverse methods have been developed to answer different questions about microplastic pollution, from sources, transport, and fate in the environment, and about effects on humans and wildlife. These methods are often insufficiently described, making studies neither comparable nor reproducible. The proliferation of new microplastic investigations and cross-study syntheses to answer larger scale questions are hampered. This diverse group of 23 researchers think these issues can begin to be overcome through the adoption of a set of reporting guidelines. This collaboration was created using an open science framework that we detail for future use. Here, we suggest harmonized reporting guidelines for microplastic studies in environmental and laboratory settings through all steps of a typical study, including best practices for reporting materials, quality assurance/quality control, data, field sampling, sample preparation, microplastic identification, microplastic categorization, microplastic quantification, and considerations for toxicology studies. We developed three easy to use documents, a detailed document, a checklist, and a mind map, that can be used to reference the reporting guidelines quickly. We intend that these reporting guidelines support the annotation, dissemination, interpretation, reviewing, and synthesis of microplastic research. Through open access licensing (CC BY 4.0), these documents aim to increase the validity, reproducibility, and comparability of studies in this field for the benefit of the global community.


Subject(s)
Microplastics/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Water Quality , Water/chemistry , Guidelines as Topic , Reproducibility of Results
14.
Appl Spectrosc ; 74(9): 1012-1047, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32249594

ABSTRACT

Microplastics are of major concerns for society and is currently in the focus of legislators and administrations. A small number of measures to reduce or remove primary sources of microplastics to the environment are currently coming into effect. At the moment, they have not yet tackled important topics such as food safety. However, recent developments such as the 2018 bill in California are requesting the analysis of microplastics in drinking water by standardized operational protocols. Administrations and analytical labs are facing an emerging field of methods for sampling, extraction, and analysis of microplastics, which complicate the establishment of standardized operational protocols. In this review, the state of the currently applied identification and quantification tools for microplastics are evaluated providing a harmonized guideline for future standardized operational protocols to cover these types of bills. The main focus is on the naked eye detection, general optical microscopy, the application of dye staining, flow cytometry, Fourier transform infrared spectroscopy (FT-Ir) and microscopy, Raman spectroscopy and microscopy, thermal degradation by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) as well as thermo-extraction and desorption gas chromatography-mass spectrometry (TED-GC-MS). Additional techniques are highlighted as well as the combined application of the analytical techniques suggested. An outlook is given on the emerging aspect of nanoplastic analysis. In all cases, the methods were screened for limitations, field work abilities and, if possible, estimated costs and summarized into a recommendation for a workflow covering the demands of society, legislation, and administration in cost efficient but still detailed manner.

15.
Anal Chem ; 92(3): 2443-2451, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31939281

ABSTRACT

As smaller particle sizes are increasingly included in microplastic research, it is critical to chemically characterize microparticles to identify whether particles are indeed microplastics. To increase the accessibility of methods for characterizing microparticles via Raman spectroscopy, we created an application-based library of Raman spectroscopy parameters specific to microplastics based on color, morphology, and size. We also created two spectral libraries that are representative of microplastics found in environmental samples. Here, we present SLoPP, a spectral library of plastic particles, consisting of 148 reference spectra, including a diversity of polymer types, colors, and morphologies. To account for the effects of aging on microplastics and associated changes to Raman spectra, we present a spectral library of plastic particles aged in the environment (SLoPP-E). SLoPP-E includes 113 spectra, including a diversity of types, colors, and morphologies. The microplastics used to make SLoPP-E include environmental samples obtained across a range of matrices, geographies, and time. Our libraries increase the likelihood of spectral matching for a broad range of microplastics because our libraries include plastics containing a range of additives and pigments that are not generally included in commercial libraries. When used in combination with commercial libraries of over 24 000 spectra, 63% of the top 5 matches across all particles tested (product and environmental) are from SLoPP and SLoPP-E. These tools were developed to improve the accessibility of microplastics research in response to a growing and multidisciplinary field, as well as to enhance data quality and consistency.

16.
Integr Environ Assess Manag ; 15(4): 596-606, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30900806

ABSTRACT

Plastic pollution in the marine environment is well documented. What remains less recognized and understood are the chemicals associated with it. Plastics enter the ocean with unreacted monomers, oligomers, and additives, which can leach over time. Moreover, plastics sorb organic and inorganic chemicals from surrounding seawater, for example, polychlorinated biphenyls (PCBs) and metals. Thus, interception and cleanup of plastics reduces the amount of chemical contaminants entering or reentering the oceans and removes those already present. Here, we estimate 1) the mass of selected chemical additives entering the global oceans with common plastic debris items, and 2) the mass of sorbed chemicals (using PCBs as a case study) associated with microplastics in selected locations. We estimate the mass of additives that entered the oceans in 2015 as constituents of 7 common plastic debris items (bottles, bottle caps, expanded polystyrene (EPS) containers, cutlery, grocery bags, food wrappers, and straws or stirrers). We calculate that approximately 190 tonnes (t) of 20 chemical additives entered the oceans with these items in 2015. We also estimate the mass of PCBs associated with microplastics in 2 coastal (Hong Kong and Hawaii) and 2 open ocean (North Pacific and South Atlantic gyres) locations, as comparative case studies. We find that the mass of chemicals is related to the mass of plastics in a location, with greater mass of PCBs closer to the source (i.e., land), where there is more plastic per unit area compared to the open ocean. We estimate approximately 85 000 times more PCBs associated with plastics in an average 4.5-km stretch of beach in Hong Kong than from the same size transect in the North Pacific gyre. In conclusion, continuing efforts for plastic interception and cleanup on shorelines effectively reduces the amount of plastic-related chemicals entering and/or reentering the marine environment. Integr Environ Assess Manag 2019;15:596-606. © 2019 SETAC.


Subject(s)
Environmental Monitoring/methods , Environmental Restoration and Remediation , Plastics/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Atlantic Ocean , Hawaii , Hong Kong , Oceans and Seas , Pacific Ocean , Water Pollution, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...