Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 7(2): 943-9, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23320536

ABSTRACT

Various literature studies show that increasing the concentration of free acid in the hot injection synthesis of colloidal nanocrystals raises the diameter of the resulting nanocrystals. We analyze this reaction chemistry/nanocrystal property relation by combining reaction simulations with an experimental study on a particular CdSe nanocrystal synthesis. We find that increasing the free acid concentration has the same effect on a real synthesis as raising the solute solubility in the simulations. Both lead to larger sizes and a deterioration of the size dispersion at constant reaction rate. Since free acids are used to coordinate the cation precursors in these syntheses, this leads to a meaningful link between a parameter in reaction simulations and the composition of an experimental reaction mixture. We thus explain the increase of the nanocrystal size with the acid concentration as resulting from an enhanced consumption of the solute by nanocrystal growth, which reduces the number of nanocrystals formed. This link between a simulation parameter and the composition of the reaction mixture provides a rational basis to further explore and understand reaction chemistry/nanocrystal property relations in the hot injection synthesis.


Subject(s)
Hot Temperature , Nanoparticles/chemistry , Nanotechnology/methods , Cadmium Compounds/chemistry , Carboxylic Acids/chemistry , Chemistry Techniques, Synthetic , Injections , Ligands , Quantum Dots , Selenium Compounds/chemistry , Solubility
2.
ACS Nano ; 6(7): 6067-74, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22686663

ABSTRACT

Using femtosecond transient absorption spectroscopy, we demonstrate that lead chalcogenide nanocrystals show considerable photoinduced absorption (PA) in a broad wavelength range just below the band gap. The time-dependent decay of the PA signal correlates with the recovery of the band gap absorption, indicating that the same carriers are involved. On this basis, we assign this PA signal to intraband absorption, that is, the excitation of photogenerated carriers from the bottom of the conduction band or the top of the valence band to higher energy levels in the conduction and valence band continuum. We confirm our experiments with tight-binding calculations. This broadband response in the commercially interesting near- to mid-infrared range is very relevant for ultra-high-speed all-optical signal processing. We benchmark the performance with bulk Si and Si nanocrystals.

3.
ACS Nano ; 6(1): 42-53, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22133359

ABSTRACT

We show that adjusting the reaction rate in a hot injection synthesis is a viable strategy to tune the diameter of colloidal nanocrystals at the end of the size distribution focusing, i.e., the postfocused diameter. The approach is introduced by synthesis simulations, which describe nucleation and growth of colloidal nanocrystals from a solute or monomer that is formed in situ out of the injected precursors. These simulations indicate that the postfocused diameter is reached at almost full yield and that it can be adjusted by the rate of monomer formation. We implement this size-tuning strategy using a particular CdSe quantum dot synthesis that shows excellent agreement with the model synthesis. After demonstrating that the reaction rate depends in first order on the Cd and Se precursor concentration, the proposed strategy of size control is explored by varying the precursor concentration. This enables the synthesis of colloidal nanocrystals with a predefined size at almost full yield and sharp size distributions. In addition, we demonstrate that the same tuning strategy applies to the synthesis of CdS quantum dots. This result is highly relevant especially in the context of reaction upscaling and automation. Moreover, the results obtained challenge the traditional interpretation of the hot injection synthesis, in particular the link between hot injection, burst nucleation, and sharp size distributions.


Subject(s)
Colloids/chemistry , Crystallization/methods , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Computer Simulation , Kinetics , Particle Size
4.
ACS Nano ; 5(3): 2004-12, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21355621

ABSTRACT

PbS Qdots are synthesized using PbCl2 and elemental sulfur as precursors. The available size range is significantly expanded using tri-n-octylphosphine (TOP), enabling the synthesis of monodisperse suspensions of Qdots with a mean size varying between 3 and 10 nm. The ligand composition and dynamics are investigated with nuclear magnetic resonance (NMR) spectroscopy. We show that the Qdots are passivated solely by highly dynamic OlAm ligands, even when TOP is employed during synthesis. In this respect, TOP is a compound strongly modifying the Qdot synthesis, without affecting the final Qdot surface chemistry. Next, the OlAm ligands are exchanged for oleic acid (OlAc). NMR data show that the OlAc ligands are tightly bound to the Qdot surface, with a coverage of 3.0±0.4 nm(-2). In addition, we demonstrate that they are bound as oleate ions. Combining this with the inorganic Qdot composition, we observe that charge-neutral Qdots are obtained when taking into account the charge of the stoichiometric PbS Qdot core, the surface excess of Pb ions, the surface-adsorbed Cl ions and the oleate ligands. The Qdot suspensions are stable under atmospheric conditions, showing no changes in the NMR and absorbance spectra for several weeks. Finally, we determine the photoluminescence quantum yield (PL QY) for OlAc-capped PbS Qdots, synthesized either with or without TOP. In both cases, they are highly luminescent, with PL QY values varying between 20 and 90%, depending on the Qdot size.


Subject(s)
Crystallization/methods , Lead/chemistry , Quantum Dots , Selenium Compounds/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
5.
ACS Nano ; 5(1): 58-66, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21189031

ABSTRACT

We present a quantitative analysis of the absorption and luminescence of colloidal PbSe/CdSe core/shell quantum dots (QDs). In absorption, both the energy and the oscillator strength of the first exciton transition coincide with that of plain PbSe QDs. In contrast, luminescence lifetime measurements indicate that the oscillator strength of the emitting transition is reduced by at least a factor of 4 compared to PbSe core QDs. Moreover, the addition of an electron scavenger quenches the PbSe/CdSe emission, while a hole scavenger does not. This implies that the electron wave function reaches the QD surface, while the hole is confined to the PbSe core. These observations are consistent with calculations based on the effective mass model, which show that PbSe/CdSe QDs are at the boundary between the type-I and quasi-type-II regime, where the electron spreads over the entire nanoparticle and the hole remains confined in the PbSe core. However, as this only leads to a minor reduction of the oscillator strength, it follows that the drastic reduction of the oscillator strength in emission cannot be explained in terms of electron delocalization. In combination with the increased Stokes shift for PbSe/CdSe QDs, this indicates that the emission results from lower energy states that are fundamentally different from the absorbing states.

SELECTION OF CITATIONS
SEARCH DETAIL
...