Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell Rep ; 43(1): 113611, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38159276

ABSTRACT

Complement is a fundamental innate immune response component. Its alterations are associated with severe systemic diseases. To illuminate the complement's genetic underpinnings, we conduct genome-wide association studies of the functional activity of the classical (CP), lectin (LP), and alternative (AP) complement pathways in the Cooperative Health Research in South Tyrol study (n = 4,990). We identify seven loci, encompassing 13 independent, pathway-specific variants located in or near complement genes (CFHR4, C7, C2, MBL2) and non-complement genes (PDE3A, TNXB, ABO), explaining up to 74% of complement pathways' genetic heritability and implicating long-range haplotypes associated with LP at MBL2. Two-sample Mendelian randomization analyses, supported by transcriptome- and proteome-wide colocalization, confirm known causal pathways, establish within-complement feedback loops, and implicate causality of ABO on LP and of CFHR2 and C7 on AP. LP causally influences collectin-11 and KAAG1 levels and the risk of mouth ulcers. These results build a comprehensive resource to investigate the role of complement in human health.


Subject(s)
Genome-Wide Association Study , Mannose-Binding Lectin , Humans , Complement Activation , Complement System Proteins/metabolism , Lectins/metabolism , Haplotypes/genetics , Mannose-Binding Lectin/genetics
2.
Nat Commun ; 13(1): 5144, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050321

ABSTRACT

The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Arrhythmias, Cardiac/genetics , Death, Sudden, Cardiac , Electrocardiography/methods , Genetic Testing , Humans , Male
3.
Eur J Hum Genet ; 30(12): 1391-1397, 2022 12.
Article in English | MEDLINE | ID: mdl-36064788

ABSTRACT

The Cooperative Health Research in South Tyrol (CHRIS) is a longitudinal study in Northern Italy, using dynamic consent since its inception in 2011. The CHRIS study collects health data and biosamples for research, and foresees regular follow-ups over time. We describe the experience with the CHRIS study dynamic consent, providing an overview of its conceptualization and implementation, and of the participant-centered strategies used to assess and improve the process, directly linked to participation and communication. In order to comply with high ethical standards and to allow broadness in the areas of research, CHRIS dynamic consent was conceived as an interactive process: based on a strong governance and an ongoing tailored communication with participants, it aims to promote autonomy and to develop a trust-based engaged relationship with participants, also relevant for retention. Built within an online platform, the consent allows granular choices, which can be changed over time. In a process of co-production, participants views have been investigated and kept into account in policy development. Participants showed a high degree of participation, thus enabling the consolidation of the CHRIS resources. Even though a low change rate was reported in the baseline, participants valued the possibility of changing their informed consent choices. Communication (language-tailored, ongoing, multimedia) was important for participants, and for participation and retention. In our experience, dynamic consent was proven to be a flexible consent model, which allowed to meet ethical and legal standards for participation in research, and to accommodate participants' and researchers' needs.


Subject(s)
Informed Consent , Research Personnel , Humans , Longitudinal Studies , Communication , Trust
4.
Commun Biol ; 5(1): 580, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697829

ABSTRACT

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Creatinine , Diabetic Nephropathies/genetics , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Humans , Kidney
5.
Pathog Glob Health ; 116(2): 128-136, 2022 03.
Article in English | MEDLINE | ID: mdl-34637685

ABSTRACT

The COVID-19 pandemic has been threatening the healthcare and socioeconomic systems of entire nations. While population-based surveys to assess the distribution of SARS-CoV-2 infection have become a priority, pre-existing longitudinal studies are ideally suited to assess the determinants of COVID-19 onset and severity.The Cooperative Health Research In South Tyrol (CHRIS) study completed the baseline recruitment of 13,393 adults from the Venosta/Vinschgau rural district in 2018, collecting extensive phenotypic and biomarker data, metabolomic data, densely imputed genotype and whole-exome sequencing data.Based on CHRIS, we designed a prospective study, called CHRIS COVID-19, aimed at: 1) estimating the incidence of SARS-CoV-2 infections; 2) screening for and investigating the determinants of incident infection among CHRIS participants and their household members; 3) monitoring the immune response of infected participants prospectively.An online screening questionnaire was sent to all CHRIS participants and their household members. A random sample of 1450 participants representative of the district population was invited to assess active (nasopharyngeal swab) or past (serum antibody test) infections. We prospectively invited for complete SARS-CoV-2 testing all questionnaire completers gauged as possible cases of past infection and their household members. In positive tested individuals, antibody response is monitored quarterly for one year. Untested and negative participants receive the screening questionnaire every four weeks until gauged as possible incident cases or till the study end.Originated from a collaboration between researchers and community stakeholders, the CHRIS COVID-19 study aims at generating knowledge about the epidemiological, molecular, and genetic characterization of COVID-19 and its long-term sequelae.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/genetics
6.
Epidemiol Infect ; 149: e194, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34645534

ABSTRACT

Estimating the spread of SARS-CoV-2 infection in communities is critical. We surveyed 2244 stratified random sample community members of the Gardena valley, a winter touristic area, amidst the first expansion phase of the COVID-19 pandemic in Europe. We measured agreement between Diasorin and Abbott serum bioassay outputs and the Abbott optimal discriminant threshold of serum neutralisation titres with recursive receiver operating characteristic curve. We analytically adjusted serum antibody tests for unbiased seroprevalence estimate and analysed the determinants of infection with non-response weighted multiple logistic regression. SARS-CoV-2 seroprevalence was 26.9% (95% CI 25.2-28.6) by June 2020. The bioassays had a modest agreement with each other. At a lower threshold than the manufacturer's recommended level, the Abbott assay reflected greater discrimination of serum neutralisation capacity. Seropositivity was associated with place and economic activity, not with sex or age. Symptoms like fever and weakness were age-dependent. SARS-CoV-2 mitigation strategies should account for context in high prevalence areas.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , COVID-19/diagnosis , COVID-19 Serological Testing , Female , Humans , Immunoglobulin G/blood , Italy/epidemiology , Male , Neutralization Tests , Prevalence , Risk Factors , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Seroepidemiologic Studies
7.
Eur J Hum Genet ; 29(7): 1146-1157, 2021 07.
Article in English | MEDLINE | ID: mdl-33981014

ABSTRACT

Recall by genotype (RbG) studies aim to better understand the phenotypes that correspond to genetic variants of interest, by recruiting carriers of such variants for further phenotyping. RbG approaches pose major ethical and legal challenges related to the disclosure of possibly unwanted genetic information. The Cooperative Health Research in South Tyrol (CHRIS) study is a longitudinal cohort study based in South Tyrol, Italy. Demand has grown for CHRIS study participants to be enrolled in RbG studies, thus making the design of a suitable ethical framework a pressing need. We here report upon the design of a pilot RbG study conducted with CHRIS study participants. By reviewing the literature and by consulting relevant stakeholders (CHRIS participants, clinical geneticists, ethics board, GPs), we identified key ethical issues in RbG approaches (e.g. complexity of the context, communication of genetic results, measures to further protect participants). The design of the pilot was based on a feasibility assessment, the selection of a suitable test case within the ProtectMove Research Unit on reduced penetrance of hereditary movement disorders, and the development of appropriate recruitment and communication strategies. An empirical study was embedded in the pilot study with the aim of understanding participants' views on RbG. Our experience with the pilot study in CHRIS allowed us to contribute to the development of best practices and policies for RbG studies by drawing recommendations: addressing the possibility of RbG in the original consent, implementing tailored communication strategies, engaging stakeholders, designing embedded empirical studies, and sharing research experiences and methodology.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Phenotype , Research Design , Disclosure , Ethics, Research , Genetic Association Studies/ethics , Genetic Association Studies/methods , Genetic Association Studies/standards , Humans , Informed Consent/ethics , Italy , Patient Selection , Pilot Projects , Ubiquitin-Protein Ligases/genetics
9.
J Transl Med ; 17(1): 408, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31801616

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride accumulation in the hepatocytes in the absence of alcohol overconsumption, commonly associated with insulin resistance and obesity. Both NAFLD and type 2 diabetes (T2D) are characterized by an altered microbiota composition, however the role of the microbiota in NAFLD and T2D is not well understood. To assess the relationship between alteration in the microbiota and NAFLD while dissecting the role of T2D, we established a nested study on T2D and non-T2D individuals within the Cooperative Health Research In South Tyrol (CHRIS) study, called the CHRIS-NAFLD study. Here, we present the study protocol along with baseline and follow-up characteristics of study participants. METHODS: Among the first 4979 CHRIS study participants, 227 individuals with T2D were identified and recalled, along with 227 age- and sex-matched non-T2D individuals. Participants underwent ultrasound and transient elastography examination to evaluate the presence of hepatic steatosis and liver stiffness. Additionally, sampling of saliva and faeces, biochemical measurements and clinical interviews were carried out. RESULTS: We recruited 173 T2D and 183 non-T2D participants (78% overall response rate). Hepatic steatosis was more common in T2D (63.7%) than non-T2D (36.3%) participants. T2D participants also had higher levels of liver stiffness (median 4.8 kPa, interquartile range (IQR) 3.7, 5.9) than non-T2D participants (median 3.9 kPa, IQR 3.3, 5.1). The non-invasive scoring systems like the NAFLD fibrosis score (NFS) suggests an increased liver fibrosis in T2D (mean - 0.55, standard deviation, SD, 1.30) than non-T2D participants (mean - 1.30, SD, 1.17). DISCUSSION: Given the comprehensive biochemical and clinical characterization of study participants, once the bioinformatics classification of the microbiota will be completed, the CHRIS-NAFLD study will become a useful resource to further our understanding of the relationship between microbiota, T2D and NAFLD.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Microbiota , Non-alcoholic Fatty Liver Disease/microbiology , Aged , Bacteria/metabolism , Diabetes Mellitus, Type 2/complications , Female , Humans , Male , Metabolic Syndrome/complications , Non-alcoholic Fatty Liver Disease/complications
10.
Nat Commun ; 10(1): 4130, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511532

ABSTRACT

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.


Subject(s)
Albuminuria/genetics , Chromosome Mapping , Genome-Wide Association Study , Meta-Analysis as Topic , Animals , Creatinine/urine , Diabetes Mellitus/genetics , Diabetes Mellitus/urine , Drosophila melanogaster/genetics , Gene Expression Regulation , Genetic Loci , Genetic Predisposition to Disease , Humans , Phenomics , Risk Factors
11.
J Am Coll Cardiol ; 73(24): 3118-3131, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31221261

ABSTRACT

BACKGROUND: Subclinical changes on the electrocardiogram are risk factors for cardiovascular mortality. Recognition and knowledge of electrolyte associations in cardiac electrophysiology are based on only in vitro models and observations in patients with severe medical conditions. OBJECTIVES: This study sought to investigate associations between serum electrolyte concentrations and changes in cardiac electrophysiology in the general population. METHODS: Summary results collected from 153,014 individuals (54.4% women; mean age 55.1 ± 12.1 years) from 33 studies (of 5 ancestries) were meta-analyzed. Linear regression analyses examining associations between electrolyte concentrations (mmol/l of calcium, potassium, sodium, and magnesium), and electrocardiographic intervals (RR, QT, QRS, JT, and PR intervals) were performed. The study adjusted for potential confounders and also stratified by ancestry, sex, and use of antihypertensive drugs. RESULTS: Lower calcium was associated with longer QT intervals (-11.5 ms; 99.75% confidence interval [CI]: -13.7 to -9.3) and JT duration, with sex-specific effects. In contrast, higher magnesium was associated with longer QT intervals (7.2 ms; 99.75% CI: 1.3 to 13.1) and JT. Lower potassium was associated with longer QT intervals (-2.8 ms; 99.75% CI: -3.5 to -2.0), JT, QRS, and PR durations, but all potassium associations were driven by use of antihypertensive drugs. No physiologically relevant associations were observed for sodium or RR intervals. CONCLUSIONS: The study identified physiologically relevant associations between electrolytes and electrocardiographic intervals in a large-scale analysis combining cohorts from different settings. The results provide insights for further cardiac electrophysiology research and could potentially influence clinical practice, especially the association between calcium and QT duration, by which calcium levels at the bottom 2% of the population distribution led to clinically relevant QT prolongation by >5 ms.


Subject(s)
Calcium/blood , Cardiovascular Diseases , Electrocardiography/methods , Electrophysiologic Techniques, Cardiac/methods , Magnesium/blood , Potassium/blood , Asymptomatic Diseases/epidemiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Correlation of Data , Female , Heart Conduction System/physiopathology , Humans , Male , Middle Aged , Risk Factors
12.
Nat Commun ; 9(1): 4455, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367059

ABSTRACT

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.


Subject(s)
2-Aminoadipate Transaminase/metabolism , Gene Expression Regulation/genetics , Sodium-Phosphate Cotransporter Proteins, Type I/metabolism , Thyroid Hormones/genetics , Thyrotropin/metabolism , 2-Aminoadipate Transaminase/genetics , Animals , Biological Transport , COS Cells , Chlorocebus aethiops , Genome-Wide Association Study , Humans , Hyperthyroidism/genetics , Hyperthyroidism/physiopathology , Hypothyroidism/genetics , Hypothyroidism/physiopathology , Polymorphism, Single Nucleotide , Risk Factors , Sodium-Phosphate Cotransporter Proteins, Type I/genetics , Thyroid Gland/metabolism , Thyroid Gland/physiopathology , Thyroid Hormones/metabolism , White People
13.
Hum Genet ; 136(6): 743-757, 2017 06.
Article in English | MEDLINE | ID: mdl-28374192

ABSTRACT

After the success of genome-wide association studies to uncover complex trait loci, attempts to explain the remaining genetic heritability (h 2) are mainly focused on unraveling rare variant associations and gene-gene or gene-environment interactions. Little attention is paid to the possibility that h 2 estimates are inflated as a consequence of the epidemiological study design. We studied the time series of 54 biochemical traits in 4373 individuals from the Cooperative Health Research In South Tyrol (CHRIS) study, a pedigree-based study enrolling ten participants/day over several years, with close relatives preferentially invited within the same day. We observed distributional changes of measured traits over time. We hypothesized that the combination of such changes with the pedigree structure might generate a shared-environment component with consequent h 2 inflation. We performed variance components (VC) h 2 estimation for all traits after accounting for the enrollment period in a linear mixed model (two-stage approach). Accounting for the enrollment period caused a median h 2 reduction of 4%. For 9 traits, the reduction was of >20%. Results were confirmed by a Bayesian Markov chain Monte Carlo analysis with all VCs included at the same time (one-stage approach). The electrolytes were the traits most affected by the enrollment period. The h 2 inflation was independent of the h 2 magnitude, laboratory protocol changes, and length of the enrollment period. The enrollment process may induce shared-environment effects even under very stringent and standardized operating procedures, causing h 2 inflation. Including the day of participation as a random effect is a sensitive way to avoid overestimation.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Bayes Theorem , Humans , Italy
14.
J Transl Med ; 13: 348, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26541195

ABSTRACT

The Cooperative Health Research In South Tyrol (CHRIS) study is a population-based study with a longitudinal lookout to investigate the genetic and molecular basis of age-related common chronic conditions and their interaction with life style and environment in the general population. All adults of the middle and upper Vinschgau/Val Venosta are invited, while 10,000 participants are anticipated by mid-2017. Family participation is encouraged for complete pedigree reconstruction and disease inheritance mapping. After a pilot study on the compliance with a paperless assessment mode, computer-assisted interviews have been implemented to screen for conditions of the cardiovascular, endocrine, metabolic, genitourinary, nervous, behavioral, and cognitive system. Fat intake, cardiac health, and tremor are assessed instrumentally. Nutrient intake, physical activity, and life-course smoking are measured semi-quantitatively. Participants are phenotyped for 73 blood and urine parameters and 60 aliquots per participant are biobanked (cryo-preserved urine, DNA, and whole and fractionated blood). Through liquid-chromatography mass-spectrometry analysis, metabolite profiling of the mitochondrial function is assessed. Samples are genotyped on 1 million variants with the Illumina HumanOmniExpressExome array and the first data release including 4570 fully phenotyped and genotyped samples is now available for analysis. Participants' follow-up is foreseen 6 years after the first visit. The target population is characterized by long-term social stability and homogeneous environment which should both favor the identification of enriched genetic variants. The CHRIS cohort is a valuable resource to assess the contribution of genomics, metabolomics, and environmental factors to human health and disease. It is awaited that this will result in the identification of novel molecular targets for disease prevention and treatment.


Subject(s)
Genetic Predisposition to Disease , Health Status , Life Style , Adolescent , Adult , Aged , Biological Specimen Banks , Blood Proteins/metabolism , Environment , Ethics, Medical , Exome , Female , Follow-Up Studies , Genotype , Humans , Italy/epidemiology , Longitudinal Studies , Male , Middle Aged , Patient Selection , Pedigree , Phenotype , Pilot Projects , Research Design , Software , Surveys and Questionnaires , Urinalysis , Young Adult
15.
Biopreserv Biobank ; 12(4): 225-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25075723

ABSTRACT

The Italian Hub of Population Biobanks (HIBP) includes both ongoing and completed studies that are heterogeneous in both their purpose and in the specimens collected. The heterogeneity in starting conditions makes sharing study data very difficult because of technical, ethical, and collection rights issues that hamper collaboration and synergy. With the aim of overcoming these difficulties and establishing the "proof-of-concept" that sharing studies is achievable among Italian collections, a data-sharing pilot project has been agreed to by HIBP members. Participants agreed to the general methodology and signed a shared Data Transfer Agreement. The biobanks involved were: EURAC (Micros study), CIG (GEHA project), CNESPS (FINE, MATISS, MONICA, OEC1998, ITR (Italian Twin Register), and IPREA studies, and MOLIBANK (Moli-Sani project). Biobank data were uploaded into a common database using a dedicated informatics infrastructure. Demographic data, and anthropometric and hematochemical parameters were shared for each record. Each biobank uploaded into the common database a dataset with a minimum of 1000 subjects, for a total of 5071 records. After a harmonization process, the final dataset included 3882 records. Subjects were grouped into three main geographic areas of Italy (North, Center, and South) and separate analyses were performed for men and women. The 3882 records were analyzed through multivariate logistic regression analysis. Results were expressed as odds ratios with 95% confidence interval. Results show several geographical differences in the lipidemic pattern, mostly regarding cholesterol-HDL, which represents a strong basis for further, deeper sample-based studies. This HIBP pilot study aimed to prove the feasibility of such collaborations and it provides a methodological prototype for future studies based on the participation in the partnership of well-established quality collections.


Subject(s)
Biological Specimen Banks , Cooperative Behavior , Demography , Information Dissemination , Lipids/blood , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Italy , Male , Odds Ratio , Pilot Projects , Young Adult
16.
Genet Epidemiol ; 37(2): 205-13, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23307621

ABSTRACT

Biological plausibility and other prior information could help select genome-wide association (GWA) findings for further follow-up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts' opinions and empirical evidence to estimate the relative importance of 15 types of information at the single-nucleotide polymorphism (SNP) and gene levels. Opinions were elicited from 10 experts using a two-round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNPs established as being associated with seven disease traits through GWA meta-analysis and independent replication, with the corresponding frequency in a randomly selected set of SNPs. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta-analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.


Subject(s)
Follow-Up Studies , Genetic Research , Polymorphism, Single Nucleotide , Computational Biology/methods , Genome-Wide Association Study , Humans , Meta-Analysis as Topic , Probability
17.
Genet Epidemiol ; 37(2): 214-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23280596

ABSTRACT

Prioritization is the process whereby a set of possible candidate genes or SNPs is ranked so that the most promising can be taken forward into further studies. In a genome-wide association study, prioritization is usually based on the P-values alone, but researchers sometimes take account of external annotation information about the SNPs such as whether the SNP lies close to a good candidate gene. Using external information in this way is inherently subjective and is often not formalized, making the analysis difficult to reproduce. Building on previous work that has identified 14 important types of external information, we present an approximate Bayesian analysis that produces an estimate of the probability of association. The calculation combines four sources of information: the genome-wide data, SNP information derived from bioinformatics databases, empirical SNP weights, and the researchers' subjective prior opinions. The calculation is fast enough that it can be applied to millions of SNPS and although it does rely on subjective judgments, those judgments are made explicit so that the final SNP selection can be reproduced. We show that the resulting probability of association is intuitively more appealing than the P-value because it is easier to interpret and it makes allowance for the power of the study. We illustrate the use of the probability of association for SNP prioritization by applying it to a meta-analysis of kidney function genome-wide association studies and demonstrate that SNP selection performs better using the probability of association compared with P-values alone.


Subject(s)
Bayes Theorem , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Databases, Genetic , Humans , Kidney/physiology , Meta-Analysis as Topic , Models, Genetic , Probability
18.
J Med Genet ; 48(8): 549-56, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21690246

ABSTRACT

BACKGROUND: Thyroid hormones have important roles in growth, development and control of metabolism, and their dysregulation can lead to disease. OBJECTIVES: To identify genes contributing to hyperthyrotropinaemia. DESIGN, SETTING, PARTICIPANTS: Linkage and association analyses using 1258 individuals from three Alpine villages. OUTCOME MEASURES: The study applied two different upper limits of the reference range (URR) for serum thyroid stimulating hormone (TSH) values (TSH ≥4.6 mU/l and TSH >3.0 mU/l), along with normal or low fT4 (free thyroxine) values or thyroid medical treatment to define two groups of individuals for analysis: one hyperthyrotropinaemic or high-TSH (H-TSH) (TSH ≥4.6 mU/l) group; and a larger group (TSH >3.0 mU/l) called hyperthyrotropinaemic and upper reference range TSH (H+URR-TSH). RESULTS: Non-parametric genome-wide linkage analysis was performed on pedigrees generated from the two groups. Linkage analysis in the H+URR-TSH group revealed a significant peak on chromosome 3q28-q29 (LOD 3.34) and a suggestive linkage peak on chromosome 6q26-27 (LOD 2.66). Analysis in the smaller hyperthyrotropinaemic (H-TSH) group supported linkage to chromosome 6q26-27. Single SNP and gene based SNP association analyses under the linkage peaks identified the PDE10A and DACT2 genes as candidates at the chromosome 6 locus. CONCLUSIONS: PDE10A or DACT2 were identified as candidate genes contributing to hyperthyrotropinaemia (and possibly hypothyroidism) in this sample. Studies in additional populations support association of variants at this locus with TSH values, especially in the PDE10A gene. Genetic linkage in families with hyperthyrotropinaemia suggests the presence of functional variants that contribute to pathological disruption of the hypothalamus-pituitary-thyroid axis.


Subject(s)
Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 6/genetics , Genetic Linkage , Genetic Loci/genetics , Genetic Predisposition to Disease , Genetics, Population , Thyroid Diseases/genetics , Female , Genome-Wide Association Study , Humans , Italy , Male , Pedigree , Polymorphism, Single Nucleotide/genetics
19.
Immunogenetics ; 62(8): 561-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20582410

ABSTRACT

Genomic copy number variants (CNVs) are a common, heritable source of inter-individual differences in genomic sequence. Their influence on phenotypic variability and their involvement in the pathogenesis of several common diseases is well established and the object of many current studies. In the course of examining CNV association to various quantitative traits in a general population, we have detected a strong association of CNVs over the four TCR genes to lymphocyte and neutrophil numbers in blood. In a small replication series, we have further characterized the nature of these CNVs and found them not to be germline, but dependent on the origin of analysed DNA. Germline deletion and rearrangement around the T-cell receptor (TCR) genes naturally occurs in white blood cells. Blood DNA derived from persons with high lymphocyte counts generates variable intensity signals which behave like germline CNVs over these genes. As DNA containing a relative high proportion of these CNV-like events involving the TCR genes has the ability to influence genotype counts of SNPs in the regions of these genes, care should be taken in interpreting and replicating association signals on variants within these genes when blood-derived DNA is the only source of data.


Subject(s)
DNA Copy Number Variations , Genes, T-Cell Receptor , Adult , Cheek , DNA/blood , DNA/genetics , DNA/isolation & purification , Humans , Leukocyte Count , Lymphocyte Count , Lymphocytes/immunology , Models, Genetic , Mouth Mucosa/metabolism , Neutrophils/immunology , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Sequence Deletion
20.
BMC Med Genet ; 11: 41, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20222955

ABSTRACT

BACKGROUND: Serum creatinine (S CR) is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in S CR level is explicable by genetic factors. METHODS: We performed a meta-analysis of genome-wide association studies of S CR undertaken in five population isolates ('discovery cohorts'), all of which are part of the European Special Population Network (EUROSPAN) project. Genes showing the strongest evidence for an association with SCR (candidate loci) were replicated in two additional population-based samples ('replication cohorts'). RESULTS: After the discovery meta-analysis, 29 loci were selected for replication. Association between SCR level and polymorphisms in the collagen type XXII alpha 1 (COL22A1) gene, on chromosome 8, and in the synaptotagmin-1 (SYT1) gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 x 10(-6) and 1.7 x 10(-4), respectively). Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (GABRR2) gene and the ubiquitin-conjugating enzyme E2-J1 (UBE2J1) gene (replication p value = 3.6 x 10(-3)). Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (UMOD) gene and in the schroom family member 3 (SCHROOM3) gene were also replicated. CONCLUSIONS: While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes SYT1 and GABRR2 corroborate previous findings that highlighted a possible role of the neurotransmitters GABAA receptors in the regulation of the glomerular basement membrane and a possible interaction between GABAA receptors and synaptotagmin-I at the podocyte level.


Subject(s)
Autoantigens/genetics , Creatinine/blood , Genome-Wide Association Study , Non-Fibrillar Collagens/genetics , Receptors, GABA-A/genetics , Synaptotagmin I/genetics , White People/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 8/genetics , Cohort Studies , Croatia , Germany , Humans , Middle Aged , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Young Adult , Collagen Type XVII
SELECTION OF CITATIONS
SEARCH DETAIL
...