Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
Tijdschr Psychiatr ; 63(12): 875-882, 2021.
Article in Dutch | MEDLINE | ID: mdl-34978059

ABSTRACT

BACKGROUND: Waiting times are an important barrier to timely obtaining appropriate mental health care in Flanders, but structural data is limited. AIM: To describe the waiting time problem in Flanders and propose some causal hypotheses and possible interventions. METHOD: An exploration of the available waiting time data, supplemented with literature and insights based on the results of some Flemish Centers for Mental Healthcare. RESULTS: Waiting times are especially problematic for subsidized outpatient care and care for children and youth, although the current data provide an incomplete picture. Besides capacity, important factors are the organization of the intake (e.g. assessment) and flow parameters (e.g. mean treatment duration - and intensity). CONCLUSION: Eliminating waiting lists is one of the greatest challenges for Flemish mental health care. There is a need to expand capacity as well as the smarter use of existing capacity and resources. A joint multi-level approach is required.


Subject(s)
Mental Health , Waiting Lists , Adolescent , Ambulatory Care , Child , Humans
2.
Sci Rep ; 10(1): 15650, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32973232

ABSTRACT

Metastable states created by electron or hole capture in crystal defects are widely used in dosimetry and photonic applications. Feldspar, the most abundant mineral in the Earth's crust (> 50%), generates metastable states with lifetimes of millions of years upon exposure to ionizing radiation. Although feldspar is widely used in dosimetry and geochronometry, the creation of metastable states and charge transfer across them is poorly understood. Understanding such phenomena requires next-generation methods based on high-resolution, site-selective probing of the metastable states. Recent studies using site-selective techniques such as photoluminescence (PL), and radioluminescence (RL) at 7 K have revealed that feldspar exhibits two near-infrared (NIR) emission bands peaking at 880 nm and 955 nm, which are believed to arise from the principal electron-trapping states. Here, we map for the first time the electron-trapping states in potassium-rich feldspar using spectrally-resolved cathodoluminescence microscopy at a spatial resolution of ~ 6 to 22 µm. Each pixel probed by a scanning electron microscope provides us a cathodoluminescence spectrum (SEM-CL) in the range 600-1000 nm, and elemental data from energy-dispersive x-ray (EDX) spectroscopy. We conclude that the two NIR emissions are spatially variable and, therefore, originate from different sites. This conclusion contradicts the existing model that the two emissions arise from two different excited states of a principal trap. Moreover, we are able to link the individual NIR emission peaks with the geochemical variations (K, Na and Fe concentration), and propose a model that explains the quenching of the NIR emission by Fe4+. Our study contributes to an improved understanding of charge storage in feldspathic minerals, with implications for developing sub-single grain (micrometer scale) measurement techniques in radiation dosimetry.

SELECTION OF CITATIONS
SEARCH DETAIL