Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9518, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664539

ABSTRACT

Sex is an important variable in biology. Notable differences have been observed between male and female Drosophila in regulation of metabolism, in response to nutritional challenges, and in phenotypes relevant for obesity and metabolic disorders. The differences between males and females can be expected to result from differences in gene expression. We observed that expression levels of reference genes commonly used for normalization of qRT-PCR results such as GAPDH, ß-actin, and 18SrRNA, show prominent sexual dimorphism. Since this will impact relative expression and conclusions related to that, we performed a systematic analysis of candidate reference genes with the objective of identifying reference genes with stable expression in male and female Drosophila. These reference genes (LamCa, ßTub60D and ßTub97EF) were then used to assess sex-specific differences in expression of metabolism associated genes. Additionally, we evaluated the utility of these reference genes following a nutritional challenge and showed that LamCa and ßtub97EF are stably expressed between sexes and under different nutritional conditions and are thus suitable as reference genes. Our results highlight the importance of evaluating the stability of reference genes when sex-specific differences in gene expression are studied, and identify structural genes as a category worth exploring as reference genes in other species. Finally, we also uncovered hitherto unknown sexually dimorphic expression of a number of metabolism-associated genes, information of interest to others working in the field of metabolic disorders.


Subject(s)
Sex Characteristics , Animals , Female , Male , Gene Expression Regulation , Gene Expression Profiling/methods , Reference Standards , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila/genetics , Drosophila/metabolism , Genes, Insect
2.
PLoS Genet ; 18(9): e1010380, 2022 09.
Article in English | MEDLINE | ID: mdl-36095003

ABSTRACT

Drosophila Insulin-Producing Cells (IPCs) are the main production site of the Drosophila Insulin-like peptides or dilps which have key roles in regulating growth, development, reproduction, lifespan and metabolism. To better understand the signalling pathways and transcriptional networks that are active in the IPCs we queried publicly available transcriptome data of over 180 highly inbred fly lines for dilp expression and used dilp expression as the input for a Genome-wide association study (GWAS). This resulted in the identification of variants in 125 genes that were associated with variation in dilp expression. The function of 57 of these genes in the IPCs was tested using an RNAi-based approach. We found that IPC-specific depletion of most genes resulted in differences in expression of one or more of the dilps. We then elaborated further on one of the candidate genes with the strongest effect on dilp expression, Homothorax, a transcription factor known for its role in eye development. We found that Homothorax and its binding partner Extradenticle are involved in regulating dilp2, -3 and -5 expression and that genetic depletion of both TFs shows phenotypes associated with reduced insulin signalling. Furthermore, we provide evidence that other transcription factors involved in eye development are also functional in the IPCs. In conclusion, we showed that this expression level-based GWAS approach identified genetic regulators implicated in IPC function and dilp expression.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genome-Wide Association Study , Insulin/genetics , Insulin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Biomolecules ; 12(1)2021 12 27.
Article in English | MEDLINE | ID: mdl-35053181

ABSTRACT

Obesity is a chronic disease affecting millions of people worldwide. The fruit fly (Drosophila melanogaster) is an interesting research model to study metabolic and transcriptomic responses to obesogenic diets. However, the sex-specific differences in these responses are still understudied and perhaps underestimated. In this study, we exposed adult male and female Dahomey fruit flies to a standard diet supplemented with sugar, fat, or a combination of both. The exposure to a diet supplemented with 10% sugar and 10% fat efficiently induced an increase in the lipid content in flies, a hallmark for obesity. This increase in lipid content was more prominent in males, while females displayed significant changes in glycogen content. A strong effect of the diets on the ovarian size and number of ma-ture oocytes was also present in females exposed to diets supplemented with fat and a combina-tion of fat and sugar. In both males and females, fat body morphology changed and was associ-ated with an increase in lipid content of fat cells in response to the diets. The expression of me-tabolism-related genes also displayed a strong sexually dimorphic response under normal condi-tions and in response to sugar and/or fat-supplemented diets. Here, we show that the exposure of adult fruit flies to an obesogenic diet containing both sugar and fat allowed studying sexual dimorphism in metabolism and the expression of genes regulating metabolism.


Subject(s)
Drosophila melanogaster , Sex Characteristics , Animals , Diet, Western , Drosophila , Drosophila melanogaster/metabolism , Female , Humans , Male , Obesity
5.
Diabetologia ; 61(8): 1804-1810, 2018 08.
Article in English | MEDLINE | ID: mdl-29789879

ABSTRACT

AIMS/HYPOTHESIS: The initial avascular period following islet transplantation seriously compromises graft function and survival. Enhancing graft revascularisation to improve engraftment has been attempted through virus-based delivery of angiogenic triggers, but risks associated with viral vectors have hampered clinical translation. In vitro transcribed mRNA transfection circumvents these risks and may be used for improving islet engraftment. METHODS: Mouse and human pancreatic islet cells were transfected with mRNA encoding the angiogenic growth factor vascular endothelial growth factor A (VEGF-A) before transplantation under the kidney capsule in mice. RESULTS: At day 7 post transplantation, revascularisation of grafts transfected with Vegf-A (also known as Vegfa) mRNA was significantly higher compared with non-transfected or Gfp mRNA-transfected controls in mouse islet grafts (2.11- and 1.87-fold, respectively) (vessel area/graft area, mean ± SEM: 0.118 ± 0.01 [n = 3] in Vegf-A mRNA transfected group (VEGF) vs 0.056 ± 0.01 [n = 3] in no RNA [p < 0.05] vs 0.063 ± 0.02 [n = 4] in Gfp mRNA transfected group (GFP) [p < 0.05]); EndoC-bH3 grafts (2.85- and 2.48-fold. respectively) (0.085 ± 0.02 [n = 4] in VEGF vs 0.030 ± 0.004 [n = 4] in no RNA [p < 0.05] vs 0.034 ± 0.01 [n = 5] in GFP [p < 0.05]); and human islet grafts (3.17- and 3.80-fold, respectively) (0.048 ± 0.013 [n = 3] in VEGF vs 0.015 ± 0.0051 [n = 4] in no RNA [p < 0.01] vs 0.013 ± 0.0046 [n = 4] in GFP [p < 0.01]). At day 30 post transplantation, human islet grafts maintained a vascularisation benefit (1.70- and 1.82-fold, respectively) (0.049 ± 0.0042 [n = 8] in VEGF vs 0.029 ± 0.0052 [n = 5] in no RNA [p < 0.05] vs 0.027 ± 0.0056 [n = 4] in GFP [p < 0.05]) and a higher beta cell volume (1.64- and 2.26-fold, respectively) (0.0292 ± 0.0032 µl [n = 7] in VEGF vs 0.0178 ± 0.0021 µl [n = 5] in no RNA [p < 0.01] vs 0.0129 ± 0.0012 µl [n = 4] in GFP [p < 0.001]). CONCLUSIONS/INTERPRETATION: Vegf-A mRNA transfection before transplantation provides a promising and safe strategy to improve engraftment of islets and other cell-based implants.


Subject(s)
Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Neovascularization, Physiologic , RNA, Messenger/genetics , Transfection , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Survival , Humans , Insulin/metabolism , Insulin-Secreting Cells/transplantation , Islets of Langerhans Transplantation , Mice
6.
Physiol Rev ; 98(3): 1143-1167, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29717931

ABSTRACT

Diabetes mellitus results from disturbed glucose homeostasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly regulated manner. Current therapy only delays disease progression through insulin injection and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as they do not solve the underlying beta cell defects or entirely prevent the long-term complications of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological therapeutic alternative but is severely hampered by donor shortage and immune rejection. A curative strategy should combine newer approaches to immunomodulation with beta cell replacement. Success of this approach depends on the development of practical methods for generating beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This review provides an overview of human beta cell generation.


Subject(s)
Cell Culture Techniques , Insulin-Secreting Cells/physiology , Regeneration , Animals , Homeostasis , Humans , Insulin-Secreting Cells/transplantation
7.
Diabetologia ; 60(6): 1051-1056, 2017 06.
Article in English | MEDLINE | ID: mdl-28299380

ABSTRACT

AIMS/HYPOTHESIS: Endothelial-endocrine cell interactions and vascular endothelial growth factor (VEGF)-A signalling are deemed essential for maternal islet vascularisation, glucose control and beta cell expansion during mouse pregnancy. The aim of this study was to assess whether pregnancy-associated beta cell expansion was affected under conditions of islet hypovascularisation. METHODS: Soluble fms-like tyrosine kinase 1 (sFLT1), a VEGF-A decoy receptor, was conditionally overexpressed in maternal mouse beta cells from 1.5 to 14.5 days post coitum. Islet vascularisation, glycaemic control, beta cell proliferation, individual beta cell size and total beta cell volume were assessed in both pregnant mice and non-pregnant littermates. RESULTS: Conditional overexpression of sFLT1 in beta cells resulted in islet hypovascularisation and glucose intolerance in both pregnant and non-pregnant mice. In contrast to non-pregnant littermates, glucose intolerance in pregnant mice was transient. sFLT1 overexpression did not affect pregnancy-associated changes in beta cell proliferation, individual beta cell size or total beta cell volume. CONCLUSIONS/INTERPRETATION: Reduced intra-islet VEGF-A signalling results in maternal islet hypovascularisation and impaired glycaemic control but does not preclude beta cell expansion during mouse pregnancy.


Subject(s)
Insulin-Secreting Cells/metabolism , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Cell Size , Female , Islets of Langerhans/metabolism , Mice , Pregnancy , Rats , Signal Transduction/genetics , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
8.
Diabetologia ; 59(9): 1948-58, 2016 09.
Article in English | MEDLINE | ID: mdl-27318836

ABSTRACT

AIMS/HYPOTHESIS: When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. METHODS: Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. RESULTS: The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. CONCLUSIONS/INTERPRETATION: In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.


Subject(s)
Ciliary Neurotrophic Factor/therapeutic use , Epidermal Growth Factor/therapeutic use , Hyperglycemia/drug therapy , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Alloxan/toxicity , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blood Glucose/drug effects , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction/drug effects
9.
Diabetologia ; 59(9): 1834-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27053238

ABSTRACT

The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).


Subject(s)
Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Pancreas/cytology , Animals , Cell Differentiation/physiology , Humans , Macrophages/metabolism , Transcription Factors/metabolism
10.
J Vis Exp ; (102): e52765, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26273954

ABSTRACT

Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories.


Subject(s)
Cellular Reprogramming/physiology , Insulin-Secreting Cells/cytology , Pancreas/injuries , Pancreatic Ducts/surgery , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Humans , Intraoperative Complications/pathology , Ligation/methods , Male , Mice , Mice, Inbred BALB C , Pancreas/cytology
11.
Diabetes ; 64(9): 3218-28, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26015547

ABSTRACT

Identifying pathways for ß-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17ß-estradiol (E2) and estrogen receptor (ER) signaling for stimulating ß-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in ß-cells. PDL-induced proliferation of ß-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and ß-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted ß-cell formation. In the embryonic pancreas, ß-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive ß-cell replication and formation in mouse pancreas.


Subject(s)
Cell Proliferation/genetics , Estradiol/metabolism , Estrogen Receptor alpha/genetics , Gene Expression Regulation, Developmental , Insulin-Secreting Cells/metabolism , Pancreas/embryology , Pancreatic Ducts/injuries , RNA, Messenger/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , Estrogen Receptor alpha/metabolism , Insulin-Secreting Cells/cytology , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pancreas/cytology
12.
Stem Cells Transl Med ; 4(6): 555-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25848123

ABSTRACT

UNLABELLED: Macrophages are classically considered detrimental for pancreatic ß-cell survival and function, thereby contributing to ß-cell failure in both type 1 (T1D) and 2 (T2D) diabetes mellitus. In addition, adipose tissue macrophages negatively influence peripheral insulin signaling and promote obesity-induced insulin resistance in T2D. In contrast, recent data unexpectedly uncovered that macrophages are not only able to protect ß cells during pancreatitis but also to orchestrate ß-cell proliferation and regeneration after ß-cell injury. Moreover, by altering their activation state, macrophages are able to improve insulin resistance in murine models of T2D. This review will elaborate on current insights in macrophage heterogeneity and on the evolving role of pancreas macrophages during organogenesis, tissue injury, and repair. Additional identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for both T1D and T2D. SIGNIFICANCE: Diabetes mellitus is a pandemic disease, characterized by severe acute and chronic complications. Macrophages have long been considered prime suspects in the pathogenesis of both type 1 and 2 diabetes mellitus. In this concise review, current insights in macrophage heterogeneity and on the, as yet, underappreciated role of alternatively activated macrophages in insulin sensing and ß-cell development/repair are reported. Further identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for diabetes mellitus.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Macrophages/metabolism , Regeneration , Animals , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/therapy , Humans , Macrophages/pathology , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/therapy
13.
Eur J Immunol ; 45(5): 1482-93, 2015 May.
Article in English | MEDLINE | ID: mdl-25645754

ABSTRACT

Pancreas injury by partial duct ligation (PDL) activates a healing response, encompassing ß-cell neogenesis and proliferation. Macrophages (MΦs) were recently shown to promote ß-cell proliferation after PDL, but they remain poorly characterized. We assessed myeloid cell diversity and the factors driving myeloid cell dynamics following acute pancreas injury by PDL. In naive and sham-operated pancreas, the myeloid cell compartment consisted mainly of two distinct tissue-resident MΦ types, designated MHC-II(lo) and MHC-II(hi) MΦs, the latter being predominant. MHC-II(lo) and MHC-II(hi) pancreas MΦs differed at the molecular level, with MHC-II(lo) MΦs being more M2-activated. After PDL, there was an early surge of Ly6C(hi) monocyte infiltration in the pancreas, followed by a transient MHC-II(lo) MΦ peak and ultimately a restoration of the MHC-II(hi) MΦ-dominated steady-state equilibrium. These intricate MΦ dynamics in PDL pancreas depended on monocyte recruitment by C-C chemokine receptor 2 and macrophage-colony stimulating factor receptor as well as on macrophage-colony stimulating factor receptor-dependent local MΦ proliferation. Functionally, MHC-II(lo) MΦs were more angiogenic. We further demonstrated that, at least in C-C chemokine receptor 2-KO mice, tissue MΦs, rather than Ly6C(hi) monocyte-derived MΦs, contributed to ß-cell proliferation. Together, our study fully characterizes the MΦ subsets in the pancreas and clarifies the complex dynamics of MΦs after PDL injury.


Subject(s)
Macrophages/immunology , Macrophages/pathology , Monocytes/immunology , Monocytes/pathology , Pancreas/immunology , Pancreas/injuries , Animals , Antigens, Ly/metabolism , Cell Movement/immunology , Cell Proliferation , Cellular Microenvironment/immunology , Histocompatibility Antigens Class II/metabolism , Ligation , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myeloid Cells/classification , Myeloid Cells/immunology , Myeloid Cells/pathology , Pancreas/pathology , Pancreatic Ducts/injuries , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Regeneration/immunology
15.
Diabetologia ; 57(7): 1420-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24759958

ABSTRACT

AIMS/HYPOTHESIS: IL-6 was recently shown to control alpha cell expansion. As beta cells expand following partial pancreatic-duct ligation (PDL) in adult mice, we investigated whether PDL also causes alpha cells to expand and whether IL-6 signalling is involved. As alpha cells can reprogramme to beta cells in a number of beta cell (re)generation models, we examined whether this phenomenon also exists in PDL pancreas. METHODS: Total alpha cell volume, alpha cell size and total glucagon content were evaluated in equivalent portions of PDL- and sham-operated mouse pancreases. Proliferation of glucagon(+) cells was assessed by expression of the proliferation marker Ki67. Inter-conversions between alpha and beta cells were monitored in transgenic mice with conditional cell-type-specific labelling. The role of IL-6 in regulating alpha cell proliferation was evaluated by in situ delivery of an IL-6-inactivating antibody. RESULTS: In response to PDL surgery, alpha cell volume in the ligated tissue was increased threefold, glucagon content fivefold and alpha cell size by 10%. Activation of alpha cell proliferation in PDL pancreas required IL-6 signalling. A minor fraction of alpha cells derived from beta cells, whereas no evidence for alpha to beta cell conversion was obtained. CONCLUSIONS/INTERPRETATION: In PDL-injured adult mouse pancreas, new alpha cells are generated mainly by IL-6-dependent self-duplication and seldom by reprogramming of beta cells.


Subject(s)
Cell Proliferation/physiology , Glucagon-Secreting Cells/cytology , Interleukin-6/metabolism , Pancreatic Ducts/cytology , Animals , Cell Size , Glucagon-Secreting Cells/metabolism , Ligation , Mice , Pancreatic Ducts/metabolism
16.
Nat Biotechnol ; 32(1): 76-83, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24240391

ABSTRACT

Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose responsive, and they reinstate normal glycemic control for up to 248 d. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3)-expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta-cell reprogramming through transient cytokine exposure rather than genetic modification.


Subject(s)
Ciliary Neurotrophic Factor/administration & dosage , Diabetes Mellitus/drug therapy , Epidermal Growth Factor/administration & dosage , Insulin-Secreting Cells/drug effects , Acinar Cells/drug effects , Acinar Cells/pathology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Ciliary Neurotrophic Factor/genetics , Diabetes Mellitus/genetics , Epidermal Growth Factor/genetics , Hyperglycemia/drug therapy , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred NOD/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...