Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 127: 80-89, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33932853

ABSTRACT

Acidogenic fermentation is attractive for food waste valorisation. A better understanding is required on how operation affects product selectivity. This study demonstrated that the hydraulic retention time (HRT) and organic loading rate (OLR) selected fermentation pathways in a single-stage, semi-continuous stirred tank reactor. Three combinations of HRT and OLR were tested to distinguish the effect of each parameter. Three fermentation profiles with distinct microbial communities were obtained. Predominantly n-butyric acid (13 ± 2 gCOD L-1, 55 ± 14% of carboxylates) was produced at an HRT of 8.5 days and OLR around 12 gCOD L-1d-1. Operating at an HRT two days longer, yet with similar OLR, stimulated chain elongation (up to 13.6 gCOD L-1 of n-caproic acid). This was reflected by a microbial community twice as diverse at longer HRT as indicated by first and second order Hill number (1D = 24 ± 4, 2D = 12 ± 3) and by a higher relative abundance of genera related to secondary fermentation, such as the VFA-elongating Caproiciproducens spp., and secondary lactic acid fermenter Secundilactobacillus spp.. Operating at a higher OLR (20 gCOD L-1d-1) but HRT of 8.5 days, resulted in typical lactic acid fermentation (34 ± 5 gCOD L-1) harbouring a less diverse community (1D = 8.0 ± 0.7, 2D = 5.7 ± 0.9) rich in acid-resistant homofermentative Lactobacillus spp. These findings demonstrate that a flexible product portfolio can be achieved by small adjustments in two key operating conditions. This improves the economic potential of acidogenic fermentation for food waste valorisation.


Subject(s)
Microbiota , Refuse Disposal , Bioreactors , Fermentation , Food
2.
Molecules ; 24(3)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678297

ABSTRACT

Environmental pressures caused by population growth and consumerism require the development of resource recovery from waste, hence a circular economy approach. The production of chemicals and fuels from organic waste using mixed microbial cultures (MMC) has become promising. MMC use the synergy of bio-catalytic activities from different microorganisms to transform complex organic feedstock, such as by-products from food production and food waste. In the absence of oxygen, the feedstock can be converted into biogas through the established anaerobic digestion (AD) approach. The potential of MMC has shifted to production of intermediate AD compounds as precursors for renewable chemicals. A particular set of anaerobic pathways in MMC fermentation, known as chain elongation, can occur under specific conditions producing medium chain carboxylic acids (MCCAs) with higher value than biogas and broader applicability. This review introduces the chain elongation pathway and other bio-reactions occurring during MMC fermentation. We present an overview of the complex feedstocks used, and pinpoint the main operational parameters for MCCAs production such as temperature, pH, loading rates, inoculum, head space composition, and reactor design. The review evaluates the key findings of MCCA production using MMC, and concludes by identifying critical research targets to drive forward this promising technology as a valorisation method for complex organic waste.


Subject(s)
Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Fermentation , Biofilms , Bioreactors , Biotransformation , Environment , Hydrogen-Ion Concentration , Metabolic Networks and Pathways , Models, Chemical , Thermodynamics , Waste Products
3.
Article in English | MEDLINE | ID: mdl-28265558

ABSTRACT

A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L-1), octanoic acid (up to 3.2 g L-1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total hexanoic acid concentration to 32 ± 2% below the steady-state average. As opposed to the current view of MCFA toxicity broadly leading to production collapse, this study demonstrates that varied tolerance to MCFA within the community can lead to the dominance of some species and the suppression of others, which can result in a decreased productivity of the fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...