Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biol Open ; 11(10)2022 10 15.
Article in English | MEDLINE | ID: mdl-36082847

ABSTRACT

Food quantity and macronutrients contribute to honey bee health and colony survival by mediating immune responses. We determined if this held true for bees injected with chronic bee paralysis virus (CBPV) and deformed wing virus (DWV), two common honey bee ssRNA viruses. Pollen-substitute diet and syrup consumption rates and macronutrient preferences of two Varroa-resistant stocks (Pol-Line and Russian bees) were compared to Varroa-susceptible Italian bees. Bee stocks varied in consumption, where Italian bees consumed more than Pol-Line and Russian bees. However, the protein: lipid (P:L) ratios of diet consumed by the Italian and Russian bees was greater than that of the Pol-Line bees. Treatment had different effects on consumption based on the virus injected. CBPV was positively correlated with syrup consumption, while DWV was not correlated with consumption. P:L ratios of consumed diet were significantly impacted by the interaction of bee stock and treatment, with the trends differing between CBPV and DWV. Variation in macronutrient preferences based on viral species may indicate differences in energetic costs associated with immune responses to infections impacting different systems. Further, virus species interacted with bee genotype, indicating different mechanisms of viral resistance or tolerance among honey bee genotypes.


Subject(s)
Varroidae , Animals , Bees , Genotype , Lipids , Nutrients , RNA Viruses
2.
J Insect Sci ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35137137

ABSTRACT

Honey bees are eusocial animals that exhibit both individual and social immune responses, which influence colony health. This is especially well-studied regarding the mite Varroa destructor Anderson and Trueman (Parasitiformes: Varroidae), a parasite of honey bee brood and disease vector. Varroa was introduced relatively recently to Apis mellifera L. (Hymenoptera: Apidae) and is a major driver of the catastrophic die-off of honey bee colonies in the last decade. In contrast, the original host species, Apis cerana Fabricius (Hymenoptera: Apidae) is able to survive mite infestations with little effect on colony health and survival. This resilience is due in part to a newly identified social immune response expressed by developing worker brood. Varroa infested female A. cerana brood experience delayed development and eventually die in a process called 'social apoptosis'. Here, an individual's susceptibility to Varroa results in colony level resistance. We tested for the presence of the social apoptosis trait in two Varroa resistant stocks of A. mellifera (Pol-line and Russian) with different selection histories and compared them to a known Varroa-susceptible stock (Italian). We assessed the survival and development of worker brood reared in either highly or lightly infested host colonies, then receiving one of three treatments: uninfested, experimentally inoculated with a Varroa mite, or wounded to simulate Varroa damage. We found that response to treatment was only differentiated in brood reared in lightly infested host colonies, where experimentally infested Russian honey bees had decreased survival relative to the mite-susceptible Italian stock. This is the first evidence that social apoptosis can exist in Western honey bee populations.


Subject(s)
Bees/parasitology , Disease Resistance , Varroidae , Animals , Bees/immunology , Female , Host Specificity , Mite Infestations/veterinary
3.
Front Insect Sci ; 2: 894482, 2022.
Article in English | MEDLINE | ID: mdl-38468777

ABSTRACT

Nutrition is an important component of social insect colony health especially in the face of stressors such as parasitism and viral infections. Honey bees are known to preferentially select nectar and pollen based on macronutrient and phytochemical contents and in response to pathogen loads. However, given that honey bees live in colonies, collective foraging decisions may be impacted directly by forager infection status but also by colony health. This field experiment was conducted to determine if honey bee viral infections are correlated with pollen and nectar foraging and if these associations are impacted more by colony or forager infection. By comparing regressions with and without forager and colony variables and through structural equation models, we were able to determine the relative contributions of colony and forager virus loads on forager decisions. We found that foragers had higher numbers and levels of BQCV and CBPV but lower levels of DWV viruses than their respective colonies. Overall, individuals appeared to forage based a combination of their own and colony health but with greater weight given to colony metrics. Colony parasitism by Varroa mites, positively correlated with both forager and colony DWV-B levels, was negatively associated with nectar weight. Further, colony DWV-B levels were negatively associated with individually foraged pollen protein: lipid ratios but positively correlated with nectar weight and sugar content. This study shows that both colony and forager health can simultaneously mediate individual foraging decisions and that the importance of viral infections and parasite levels varies with foraging metrics. Overall, this work highlights the continued need to explore the interactions of disease, nutrition, and genetics in social interactions and structures.

4.
BMC Genomics ; 21(1): 704, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33032523

ABSTRACT

BACKGROUND: The population genetics of U.S. honey bee stocks remain poorly characterized despite the agricultural importance of Apis mellifera as the major crop pollinator. Commercial and research-based breeding programs have made significant improvements of favorable genetic traits (e.g. production and disease resistance). The variety of bees produced by artificial selection provides an opportunity to characterize the genetic diversity and regions of the genome undergoing selection in commonly managed stocks. RESULTS: Pooled sequencing of eight honey bee stocks found strong genetic similarity among six of the stocks. Two stocks, Pol-line and Hilo, showed significant differentiation likely due to their intense and largely closed breeding for resistance to the parasitic Varroa mite. Few variants were identified as being specific to any one stock, indicating potential admixture among the sequenced stocks. Juxtaposing the underlying genetic variation of stocks selected for disease- and parasite-resistance behavior, we identified genes and candidate regions putatively associated with resistance regulated by hygienic behavior. CONCLUSION: This study provides important insights into the distinct genetic characteristics and population diversity of honey bee stocks used in the United States, and provides further evidence of high levels of admixture in commercially managed honey bee stocks. Furthermore, breeding efforts to enhance parasite resistance in honey bees may have created unique genetic profiles. Genomic regions of interest have been highlighted for potential future work related to developing genetic markers for selection of disease and parasite resistance traits. Due to the vast genomic similarities found among stocks in general, our findings suggest that additional data regarding gene expression, epigenetic and regulatory information are needed to more fully determine how stock phenotypic diversity is regulated.


Subject(s)
Bees , Genetic Variation , Animals , Bees/classification , Bees/genetics , Bees/parasitology , Genetic Markers/genetics , High-Throughput Nucleotide Sequencing , Selection, Genetic , United States , Varroidae/physiology
5.
Exp Appl Acarol ; 82(4): 455-473, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33125599

ABSTRACT

Varroa destructor is an ectoparasitic mite of immature and adult honey bees that can transmit several single-stranded RNA viruses to its host. Varroa reproduce in brood cells, and mite populations increase as colonies produce brood in spring and summer. Mite numbers also can sharply rise, particularly in the fall, by the migration of varroa into hives on foragers. Colonies with high levels of varroa and viruses often die over the winter. Feeding colonies pollen might keep virus levels low and improve survival because of the positive effects of pollen on immunity and colony growth. We compared varroa and virus levels and overwinter survival in colonies with (fed) and without (unfed) supplemental pollen. We also measured the frequency of capturing foragers with mites (FWM) at colony entrances to determine its relationship to varroa and virus levels. Colonies fed supplemental pollen were larger than unfed colonies and survived longer. Varroa populations and levels of Deformed wing virus (DWV) rose throughout the season, and were similar between fed and unfed colonies. The growth of varroa populations was correlated with FWM in fed and unfed colonies, and significantly affected DWV levels. Increasing frequencies of FWM and the effects on varroa populations might reduce the positive influence of supplemental pollen on immune function. However, pollen feeding can stimulate colony growth and this can improve colony survival.


Subject(s)
RNA Viruses , Varroidae , Animals , Bees , Pollen , Seasons
6.
J Invertebr Pathol ; 170: 107324, 2020 02.
Article in English | MEDLINE | ID: mdl-31926971

ABSTRACT

Apis mellifera pupae and their parasites Tropilaelaps and Varroa destructor were collected from honey bee hives in Palawan, Philippines for species identification of the Tropilaelaps and viral analyses. Genetic analysis identified Tropilaelaps mercedesae infesting A. mellifera on the island. Viral analyses showed that all pupae and their infesting Tropilaelaps or Varroa shared the same Deformed Wing Virus (DWV) variant infections with DWV-B being more prevalent than DWV-A. Pupae infested with either Varroa or Tropilaelaps had higher levels of both DWV variants than uninfested pupae. Vigilance is needed to prevent the spread of Tropilaelaps clareae into Palawan and T. mercedesae and DWV variants from Palawan to other provinces.


Subject(s)
Bees/virology , Host-Parasite Interactions , Mites/classification , Mites/virology , Animals , Bees/growth & development , Bees/parasitology , Mites/physiology , Philippines , Pupa/growth & development , Pupa/parasitology , Pupa/virology , RNA Viruses/isolation & purification , Varroidae/physiology , Varroidae/virology , Viral Load/physiology
7.
Sci Rep ; 9(1): 13044, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506594

ABSTRACT

Tropilaelaps mercedesae parasitism can cause Apis mellifera colony mortality in Asia. Here, we report for the first time that tropilaelaps mites feed on both pre- and post-capped stages of honey bees. Feeding on pre-capped brood may extend their survival outside capped brood cells, especially in areas where brood production is year-round. In this study, we examined the types of injury inflicted by tropilaelaps mites on different stages of honey bees, the survival of adult honey bees, and level of honey bee viruses in 4th instar larvae and prepupae. The injuries inflicted on different developing honey bee stages were visualised by staining with trypan blue. Among pre-capped stages, 4th instar larvae sustained the highest number of wounds (4.6 ± 0.5/larva) while 2nd-3rd larval instars had at least two wounds. Consequently, wounds were evident on uninfested capped brood (5th-6th instar larvae = 3.91 ± 0.64 wounds; prepupae = 5.25 ± 0.73 wounds). Tropilaelaps mite infestations resulted in 3.4- and 6-fold increases in the number of wounds in 5th-6th instar larvae and prepupae as compared to uninfested capped brood, respectively. When wound-inflicted prepupae metamorphosed to white-eyed pupae, all wound scars disappeared with the exuviae. This healing of wounds contributed to the reduction of the number of wounds (≤10) observed on the different pupal stages. Transmission of mite-borne virus such as Deformed Wing Virus (DWV) was also enhanced by mites feeding on early larval stages. DWV and Black Queen Cell Virus (BQCV) were detected in all 4th instar larvae and prepupae analysed. However, viral levels were more pronounced in scarred 4th instar larvae and infested prepupae. The remarkably high numbers of wounds and viral load on scarred or infested developing honey bees may have caused significant weight loss and extensive injuries observed on the abdomen, wings, legs, proboscis and antennae of adult honey bees. Together, the survival of infested honey bees was significantly compromised. This study demonstrates the ability of tropilaelaps mites to inflict profound damage on A. mellifera hosts. Effective management approaches need to be developed to mitigate tropilaelaps mite problems.


Subject(s)
Bees/parasitology , Feeding Behavior , Mite Infestations , Mites , Animals , Behavior, Animal , Larva , Mites/anatomy & histology , Mites/ultrastructure , Pupa
8.
Insects ; 10(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626028

ABSTRACT

Parasitic mites and pathogens compromise honey bee health. Development of sustainable and integrative methods of managing these problems will minimize their detrimental impact on honey bees. Here, we aimed to determine if the combination of using mite-resistant stocks along with gamma-irradiated combs influences colony health and productivity. The major finding concerned honey bee genotype confirming that Russian honey bees are more resistant to Varroa destructor than Italian honey bees. The effect of comb irradiation was inconsistent showing a significant increase in adult bee population and amount of stored pollen in 2015, but not in 2016. The increased amount of stored pollen was probably associated with larger adult population in colonies with irradiated combs in September 2015 regardless of honey bee stock. Nevertheless, the ability of bees to collect and store more pollen in the irradiated group does not appear to compensate the negative impacts of mite parasitism on honey bees especially in the Italian bees, which consistently suffered significant colony losses during both years. Results of viral analyses of wax, newly emerged bees, and Varroa and their pupal hosts showed common detections of Deformed wing virus (DWV), Varroa destructor virus (VDV-1), Chronic bee paralysis virus (CBPV), and Black queen cell virus (BQCV). Wax samples had on average ~4 viruses or pathogens detected in both irradiated and non-irradiated combs. Although pathogen levels varied by month, some interesting effects of honey bee stock and irradiation treatment were notable, indicating how traits of mite resistance and alternative treatments may have additive effects. Further, this study indicates that wax may be a transmission route of viral infection. In addition, pupae and their infesting mites from Italian colonies exhibited higher levels of DWV than those from Russian colonies suggesting potential DWV resistance by Russian honey bees. CBPV levels were also reduced in mites from Russian colonies in general and in mites, mite-infested pupae, and newly emerged bees that were collected from irradiated combs. However, BQCV levels were not reduced by comb irradiation. Overall, the contribution of irradiating comb in improving honey bee health and colony survival appears to be subtle, but may be useful as part of an integrated pest management strategy with the addition of using mite-resistant stocks.

9.
J Invertebr Pathol ; 153: 57-64, 2018 03.
Article in English | MEDLINE | ID: mdl-29453966

ABSTRACT

Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity.


Subject(s)
Beekeeping/methods , Bees/parasitology , Fungi/radiation effects , Gamma Rays , Microsporidia/radiation effects , Viruses/radiation effects , Animals
10.
J Invertebr Pathol ; 153: 35-37, 2018 03.
Article in English | MEDLINE | ID: mdl-29452084

ABSTRACT

Successful reproduction by unmated Tropilaelaps mercedesae is reported here for the first time. Of the eight mature daughters that did not have male mates within their natal cells, four produced both mature sons and daughters, and four produced mature daughters only. Overall, 78% of the new daughters that had no egg-laying experience, and 84% of the foundresses that had or had not laid previously reproduced. Both inoculum daughter and foundress mites were collected from tan-bodied pupae and inoculated immediately. Therefore, our results suggest that phoresy is not required for reproduction in tropilaelaps mites. The ability of virgin females to lay both males and females (deuterotoky), and to reproduce without spending a phoretic period on adult bees may play major roles in tropilaelaps mites' competitive advantage over varroa mites in Apis mellifera colonies.


Subject(s)
Bees/parasitology , Mites/physiology , Animals , Behavior, Animal , Female , Reproduction/physiology
11.
Insects ; 8(4)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29186033

ABSTRACT

Gamma irradiation is known to inactivate various pathogens that negatively affect honey bee health. Bee pathogens, such as Deformed wing virus (DWV) and Nosema spp., have a deleterious impact on foraging activities and bee survival, and have been detected in combs. In this study, we assessed the effects of gamma irradiation on the flight activities, pathogen load, and survival of two honey bee stocks that were reared in irradiated and non-irradiated combs. Overall, bee genotype influenced the average number of daily flights, the total number of foraging flights, and total flight duration, in which the Russian honey bees outperformed the Italian honey bees. Exposing combs to gamma irradiation only affected the age at first flight, with worker bees that were reared in non-irradiated combs foraging prematurely compared to those reared in irradiated combs. Precocious foraging may be associated with the higher levels of DWV in bees reared in non-irradiated combs and also with the lower amount of pollen stores in colonies that used non-irradiated combs. These data suggest that gamma irradiation of combs can help minimize the negative impact of DWV in honey bees. Since colonies with irradiated combs stored more pollen than those with non-irradiated combs, crop pollination efficiency may be further improved when mite-resistant stocks are used, since they performed more flights and had longer flight durations.

12.
J Econ Entomol ; 110(2): 319-332, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28334185

ABSTRACT

Parasitic mites are the major threat to the Western honey bee, Apis mellifera L. For much of the world, Varroa destructor Anderson & Trueman single-handedly inflicts unsurmountable problems to A. mellifera beekeeping. However, A. mellifera in Asia is also faced with another genus of destructive parasitic mite, Tropilaelaps. The life history of these two parasitic mites is very similar, and both have the same food requirements (i.e., hemolymph of developing brood). Hence, parasitism by Tropilaelaps spp., especially Tropilaelaps mercedesae and Tropilaelaps clareae, also results in death of immature brood or wing deformities in infested adult bees. The possible introduction of Tropilaelaps mites outside their current range heightens existing dilemmas brought by Varroa mites. In this review, we provide historic, as well as current information on the taxonomic status, life history, distribution and host range, diagnosis, and control of Tropilaelaps mites. Because the biology of Tropilaelaps mites is not well known, we also suggest areas of research that demand immediate attention. Any biological information about Tropilaelaps mites will provide useful information for the development of control measures against them.


Subject(s)
Bees/parasitology , Life History Traits , Mites/physiology , Animals , Asia , Beekeeping , Host-Parasite Interactions
13.
Genom Data ; 9: 97-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27453819

ABSTRACT

The small hive beetle (SHB), Aethina tumida, is a major pest of managed honey bee (Apis mellifera) colonies in the United States and Australia, and an emergent threat in Europe. While strong honey bee colonies generally keep SHB populations in check, weak or stressed colonies can succumb to infestations. This parasite has spread from a sub-Saharan Africa to three continents, leading to immense management and regulatory costs. We performed a transcriptomic analysis involving deep sequencing of multiple life stages and both sexes of this species. The assembled transcriptome appears to be nearly complete, as judged by conserved insect orthologs and the ability to find plausible homologs for 11,952 proteins described from the genome of the red flour beetle. Expressed genes include each of the major metabolic, developmental and sensory groups, along with genes for proteins involved with immune defenses and insecticide resistance. We also present a total of 23,085 high-quality SNP's for the assembled contigs. We highlight potential differences between this beetle and its honey bee hosts, and suggest mechanisms of future research into the biology and control of this species. SNP resources will allow functional genetic analyses and analyses of dispersal for this invasive pest. All resources are posted as Supplemental Tables at https://data.nal.usda.gov/dataset/data-transcriptomic-and-functional-resources-small-hive-beetle-aethina-tumida-worldwide, and at NCBI under Bioproject PRJNA256171.

14.
Genetica ; 144(3): 279-87, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27010806

ABSTRACT

Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.


Subject(s)
Bees/genetics , Biological Evolution , Animals , Chromosomes, Insect , Comparative Genomic Hybridization , Gene Amplification , Gene Deletion , Genes, Insect , Genome, Insect
15.
J Insect Physiol ; 72: 28-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25456452

ABSTRACT

The viral levels and immune responses of Italian honey bees (IHB), Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL) deliberately infested with one or two foundress Varroa were compared. We found that the Deformed wing virus (DWV) level in IHB inoculated with one or two foundress Varroa increased to about 10(3) or 10(5) fold the levels of their uninfested brood. In contrast, POL (10(2) or 10(4) fold) and RHB (10(2) or l0(4) fold) supported a lower increase in DWV levels. The feeding of different stages of Varroa nymphs did not increase DWV levels of their pupal hosts. Analyses of their corresponding Varroa mites showed the same trends: two foundress Varroa yielded higher DWV levels than one foundress, and the addition of nymphs did not increase viral levels. Using the same pupae examined for the presence of viruses, 16 out of 24 genes evaluated showed significant differential mRNA expression levels among the three honey bee stocks. However, only four genes (Defensin, Dscam, PPOact and spaetzle), which were expressed at similar levels in uninfested pupae, were altered by the number of feeding foundress Varroa and levels of DWV regardless of stocks. This research provides the first evidence that immune response profiles of different honey bee stocks are induced by Varroa parasitism.


Subject(s)
Bees/parasitology , Bees/virology , Picornaviridae/physiology , Varroidae/virology , Animals , Bees/genetics , Bees/immunology , Gene Expression Regulation , Host-Parasite Interactions , Pupa/genetics , Pupa/parasitology , Pupa/virology
16.
J Econ Entomol ; 107(2): 516-22, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24772529

ABSTRACT

Varroa destructor (Anderson and Trueman) trapped on bottom boards were assessed as indirect measurements of colony mite population differences and potential indicators of mite resistance in commercial colonies of Russian and Italian honey bees (Apis mellifera L.) by using 35 candidate measurements. Measurements included numbers of damaged and nondamaged younger mites, nymphs, damaged and nondamaged older mites, fresh mites, and all mites, each as a proportion of total mites in the colonies and as a proportion of all trapped mites or all trapped fresh mites. Several measurements differed strongly between the stocks, suggesting that the detailed characteristics of trapped mites may reflect the operation of resistance mechanisms in the Russian honey bees. Regression analyses were used to determine the relationships of these candidate measurements with the number of mites in the colonies. The largest positive regressions differed for the two stocks (Italian honey bees: trapped mites and trapped younger mites; Russian honey bees: trapped younger mites and trapped fresh mites). Also, the regressions for Italian honey bees were substantially stronger. The largest negative regressions with colony mites for both stocks were for the proportion of older mites out of all trapped mites. Although these regressions were statistically significant and consistent with those previously reported, they were weaker than those previously reported. The numbers of mites in the colonies were low, especially in the Russian honey bee colonies, which may have negatively influenced the precision of the regressions.


Subject(s)
Bees/genetics , Bees/parasitology , Breeding/methods , Varroidae/physiology , Animals , California , Nymph/physiology
17.
J Econ Entomol ; 107(2): 523-30, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24772530

ABSTRACT

Two types of honey bees, Apis mellifera L., bred for resistance to Varroa destructor Anderson & Trueman, were evaluated for performance when used for honey production in Montana, and for almond pollination the following winter. Colonies of Russian honey bees and outcrossed honey bees with Varroa-sensitive hygiene (VSH) were compared with control colonies of Italian honey bees. All colonies were managed without miticide treatments. In total, 185 and 175 colonies were established for trials in 2010-2011 and 2011-2012, respectively. Survival of colonies with original queens or with supersedure queens was similar among stocks for both years. Colony sizes of the Varroa-resistant stocks were as large as or larger than the control colonies during periods critical to honey production and almond pollination. Honey production varied among stocks. In the first year, all stocks produced similar amounts of honey. In the second year, Russian honey bees colonies produced less honey than the control colonies. V. destructor infestations also varied among stocks. In the first year, control colonies had more infesting mites than either of the Varroa-resistant stocks, especially later in the year. In the second year, the control and outcrossed Varroa-sensitive hygiene colonies had high and damaging levels of infestation while the Russian honey bees colonies maintained lower levels of infestation. Infestations of Acarapis woodi (Rennie) were generally infrequent and low. All the stocks had similarly high Nosema ceranae infections in the spring and following winter of both years. Overall, the two Varroa-resistant stocks functioned adequately in this model beekeeping system.


Subject(s)
Beekeeping , Bees/physiology , Honey/analysis , Pollination , Prunus/physiology , Animals , Bees/genetics , Bees/microbiology , Bees/parasitology , California , Mites/physiology , Montana , Nosema/physiology , Polymerase Chain Reaction , Seasons , Varroidae/physiology
18.
Exp Appl Acarol ; 62(1): 47-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23979656

ABSTRACT

This study assessed the response of Apis mellifera to brood deliberately infested with Tropilaelaps mercedesae. The reproductive success of T. mercedesae in mite-inoculated and naturally infested brood was also compared. The presence of T. mercedesae inside brood cells significantly affected brood removal. Thai A. mellifera removed 52.6 ± 8.2 % of the brood inoculated with T. mercedesae as compared to 17.2 ± 1.8 and 5.7 ± 1.1 % removal rates for the groups of brood with their cell cappings opened and closed without mite inoculation and the control brood (undisturbed, no mite inoculation), respectively. Brood removal peaked during the second and third days post inoculation when test brood was at the prepupal stage. Overall, non-reproduction (NR) of foundress T. mercedesae was high. However, when NR was measured based on the criteria used for Varroa, the naturally infested pupae (NIP) supported the highest NR (92.8 %). Newly sealed larvae inoculated with Tropilaelaps collected from newly sealed larvae (NSL) had 78.2 % NR and those inoculated with Tropilaelaps collected from tan-bodied pupae (TBP) had 76.8 % NR. Since Tropilaelaps is known to have a short development period and nearly all progeny reach adulthood by the time of host emergence, we also used two Tropilaelaps-specific criteria to determine NR. Foundresses that did not produce progeny and those that produced only one progeny were considered NR. Using these two criteria, NR decreased tremendously but showed similar trends with means of 65, 40 and 33 % for NIP, NSL and TBP, respectively. High NR in the NIP group may indicate increased hygienic behavior in Thai A. mellifera colonies. The removal of infested prepupae or tan-bodied pupae will likely decrease the reproductive potential of Tropilaelaps. Our study suggests that brood removal may be one of the resistance mechanisms towards T. mercedesae by naturally adapted Thai A. mellifera.


Subject(s)
Bees/parasitology , Behavior, Animal , Mites/physiology , Animals , Female , Male , Reproduction
19.
PLoS One ; 10(4): e0116672, 2014.
Article in English | MEDLINE | ID: mdl-25909856

ABSTRACT

Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an "actual brood removal assay" that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.


Subject(s)
Bees/parasitology , Insect Proteins/genetics , Varroidae/physiology , Animals , Bees/classification , Bees/genetics , Bees/immunology , Disease Resistance , Phenotype , Quantitative Trait Loci
20.
J Econ Entomol ; 106(2): 566-75, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23786041

ABSTRACT

Varroa destructor (Anderson and Truman) trapped on bottom boards were assessed as indirect measurements of colony mite populations and mite fall in colonies of Russian and Italian honey bees using 29 candidate measurements. Measurements included damaged and nondamaged younger mites, damaged and nondamaged older mites, fresh mites and all mites, each as a proportion of total mites in the colonies and as a proportion of all trapped mites or all trapped fresh mites. Regression analyses were used to determine the relationships of these candidate measurements to the number of mites in the colonies. The largest positive regressions were found for trapped younger mites (Y) and trapped fresh mites (F). Measurments of Y and F across time could be used to estimate mite population growth for the purposes of selective breeding. The largest negative regressions with colony mites were observed for: trapped older mites/trapped mites (O/T), trapped older mites/trapped younger mites (O/Y), and trapped injured older mites/injured mites (IO/I). O/T and O/Y are significantly higher for Russian honey bee colonies suggesting that they are related to at least some of the mechanisms used by Russian honey bee to resist Varroa population growth. O/T and O/Y have strong negative relationships with colony mites for both Russian honey bee and Italian colonies suggesting that both strains possibly could be selected for reduced colony mites using O/T or O/Y.


Subject(s)
Bees/parasitology , Varroidae/physiology , Animals , Italy , Linear Models , Population Density , Russia , Seasons , Varroidae/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...