Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Process Impacts ; 17(2): 316-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25380291

ABSTRACT

Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of these interventions in actual operating classrooms. An exploratory study was performed to evaluate a combination of the two systems in a primary school. Measurements of PM-10 and PM-2.5 were performed by filter sampling and aerosol spectrometry. Other IAQ parameters included black smoke (BS), volatile organic compounds (VOC), nitrogen dioxide (NO2) and formaldehyde. Both interventions were introduced in one classroom during one week, using another classroom as a reference. In a second week the interventions were moved to the other classroom, using the first as a reference (cross-over design). In three remaining weeks the classrooms were compared without interventions. Indoor IAQ parameters were compared to the corresponding outdoor parameters using the indoor/outdoor (I/O) ratio. When the classrooms were occupied (teaching hours) interventions resulted in 27-43% reductions of PM-10, PM-2.5 and BS values. During the weekends the systems reduced these levels by 51-87%. Evaluations using the change in I/O ratios gave comparable results. Levels of VOC, NO2 and formaldehyde were rather low and a contribution of the interventions to the improvement of these gas phase IAQ parameters was inconclusive.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/prevention & control , Dust/analysis , Floors and Floorcoverings , Air Pollution, Indoor/analysis , Environmental Monitoring , Filtration , Schools , Ventilation
2.
Epidemiology ; 24(5): 753-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23873073

ABSTRACT

BACKGROUND: Air pollution has been associated with respiratory health effects. There is little direct evidence that reductions in air pollution related to abatement policies lead to actual improvement in respiratory health. We assessed whether a reduction in (traffic policy-related) air pollution concentrations was associated with changes in respiratory health. METHODS: Air pollution concentrations and respiratory health were measured in 2008 and 2010 at eight busy urban streets and at four suburban background control locations. Respiratory function was assessed twice in 661 residents by spirometry and measurements of airway resistance. Nitric oxide (NO) in exhaled air was measured as a marker for airway inflammation. RESULTS: Air pollution concentrations were lower in 2010 than in 2008. The declines in pollutants varied among locations, with the largest decline observed in a street with a large reduction in traffic intensity. In regression analyses adjusted for important covariates, reductions in concentrations of soot, NO2, NOx, Cu, and Fe were associated with increases in forced vital capacity (FVC) (∼1% increase per interquartile range [IQR] decline). Airway resistance decreased with a decline in particulate matter (PM10) and PM2.5 (9% per IQR), although these associations were somewhat less consistent. No associations were found with exhaled NO. Results were driven largely by one street where traffic-related air pollution showed the largest reduction. Forced expiratory volume and FVC improved by 3% to 6% in residents of this street compared with suburban background residents. This was accompanied by a suggestive reduction in airway resistance. CONCLUSIONS: Reductions in air pollution may lead to small improvements in respiratory function.


Subject(s)
Air Pollution/prevention & control , Public Policy , Respiratory Tract Diseases/physiopathology , Urban Health/statistics & numerical data , Vehicle Emissions/prevention & control , Adolescent , Adult , Air Pollutants/analysis , Air Pollution/analysis , Child , Female , Humans , Male , Netherlands , Nitric Oxide/analysis , Respiratory Function Tests , Young Adult
3.
Environ Health ; 11: 75, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23039312

ABSTRACT

BACKGROUND: Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction will have major implications for air quality policy since it will determine which sources should be controlled.The RUPIOH study, an EU-funded multicentre study, was designed to examine the distribution of various ambient particle metrics in four European cities (Amsterdam, Athens, Birmingham, Helsinki) and assess their health effects in participants with asthma or COPD, based on a detailed exposure assessment. In this paper the association of central site measurements with respiratory symptoms and restriction of activities is examined. METHODS: At each centre a panel of participants with either asthma or COPD recorded respiratory symptoms and restriction of activities in a diary for six months. Exposure assessment included simultaneous measurements of coarse, fine and ultrafine particles at a central site. Data on gaseous pollutants were also collected. The associations of the 24-hour average concentrations of air pollution indices with the health outcomes were assessed in a hierarchical modelling approach. A city specific analysis controlling for potential confounders was followed by a meta-analysis to provide overall effect estimates. RESULTS: A 10 µg/m3 increase in previous day coarse particles concentrations was positively associated with most symptoms (an increase of 0.6 to 0.7% in average) and limitation in walking (OR= 1.076, 95% CI: 1.026-1.128). Same day, previous day and previous two days ozone concentrations were positively associated with cough (OR= 1.061, 95% CI: 1.013-1.111; OR= 1.049, 95% CI: 1.016-1.083 and OR= 1.059, 95% CI: 1.027-1.091, respectively). No consistent associations were observed between fine particle concentrations, nitrogen dioxide and respiratory health effects. As for particle number concentrations negative association (mostly non-significant at the nominal level) was observed with most symptoms whilst the positive association with limitation of activities did not reach the nominal level of significance. CONCLUSIONS: The observed associations with coarse particles are in agreement with the findings of toxicological studies. Together they suggest it is prudent to regulate also coarse particles in addition to fine particles.


Subject(s)
Air Pollution/adverse effects , Asthma/chemically induced , Particulate Matter/toxicity , Pulmonary Disease, Chronic Obstructive/chemically induced , Respiration Disorders/chemically induced , Adult , Aged , Aged, 80 and over , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Asthma/epidemiology , Cities , Europe/epidemiology , Female , Humans , Male , Middle Aged , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Odds Ratio , Ozone/analysis , Ozone/toxicity , Particulate Matter/analysis , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiration Disorders/epidemiology , Walking
4.
Sci Total Environ ; 435-436: 132-40, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22846773

ABSTRACT

BACKGROUND: Evaluations of the effectiveness of air pollution policy interventions are scarce. This study investigated air pollution at street level before and after implementation of local traffic policies including low emission zones (LEZ) directed at heavy duty vehicles (trucks) in five Dutch cities. METHODS: Measurements of PM(10), PM(2.5), 'soot', NO(2), NO(x), and elemental composition of PM(10) and PM(2.5) were conducted simultaneously at eight streets, six urban background locations and four suburban background locations before (2008) and two years after implementation of the policies (2010). The four suburban locations were selected as control locations to account for generic air pollution trends and weather differences. RESULTS: All pollutant concentrations were lower in 2010 than in 2008. For traffic-related pollutants including 'soot' and NO(x) and elemental composition (Cr, Cu, Fe) the decrease did not differ significantly between the intervention locations and the suburban control locations. Only for PM(2.5) reductions were considerably larger at urban streets (30%) and urban background locations (27%) than at the matching suburban control locations (20%). In one urban street where traffic intensity was reduced with 50%, 'soot', NO(x) and NO(2) concentrations were reduced substantially more (41, 36 and 25%) than at the corresponding suburban control location (22, 14 and 7%). CONCLUSION: With the exception of one urban street where traffic flows were drastically reduced, the local traffic policies including LEZ were too modest to produce significant decreases in traffic-related air pollution concentrations.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Vehicle Emissions/analysis , Cities , Environmental Exposure , Motor Vehicles/statistics & numerical data , Netherlands , Nitrogen Oxides/analysis , Soot/analysis
5.
Environ Health Perspect ; 120(2): 185-91, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22015682

ABSTRACT

BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative potential of PM collected at major urban streets and background locations, the associaton of oxidative potential with other PM characteristics, and the oxidative potential in different PM size fractions. METHODS: Measurements of PM with aerodynamic diameter ≤ 10 µm (PM10), PM with aerodynamic diameter ≤ 2.5 µm (PM2.5), soot, elemental composition, and oxidative potential of PM were conducted simultaneously in samples from 8 major streets and 10 urban and suburban background locations in the Netherlands. Six 1-week measurements were performed at each location over a 6-month period in 2008. Oxidative potential was measured as the ability to generate hydroxyl radicals in the presence of hydrogen peroxide in all PM10 samples and a subset of PM2.5 samples. RESULTS: The PM10 oxidative potential of samples from major streets was 3.6 times higher than at urban background locations, exceeding the contrast for PM mass, soot, and all measured chemical PM characteristics. The contrast between major streets and suburban background locations was even higher (factor of 6.5). Oxidative potential was highly correlated with soot, barium, chromium, copper, iron, and manganese. Oxidative potential of PM10 was 4.6 times higher than the oxidative potential of PM2.5 when expressed per volume unit and 3.1 times higher when expressed per mass unit. CONCLUSIONS: The oxidative potential of PM near major urban roads was highly elevated compared with urban and suburban background locations, and the contrast was greater than that for any other measured PM characteristic.


Subject(s)
Air Pollutants/chemistry , Environmental Exposure/analysis , Particulate Matter/chemistry , Air Pollutants/analysis , Analysis of Variance , Cities , Electron Spin Resonance Spectroscopy , Environmental Monitoring , Humans , Netherlands , Oxidation-Reduction , Particle Size , Particulate Matter/analysis , Residence Characteristics , Seasons , Spectrometry, X-Ray Emission
6.
Part Fibre Toxicol ; 6: 19, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19630955

ABSTRACT

BACKGROUND: Exposure to fine ambient particulate matter (PM) has consistently been associated with increased morbidity and mortality. The relationship between exposure to ultrafine particles (UFP) and health effects is less firmly established. If UFP cause health effects independently from coarser fractions, this could affect health impact assessment of air pollution, which would possibly lead to alternative policy options to be considered to reduce the disease burden of PM. Therefore, we organized an expert elicitation workshop to assess the evidence for a causal relationship between exposure to UFP and health endpoints. METHODS: An expert elicitation on the health effects of ambient ultrafine particle exposure was carried out, focusing on: 1) the likelihood of causal relationships with key health endpoints, and 2) the likelihood of potential causal pathways for cardiac events. Based on a systematic peer-nomination procedure, fourteen European experts (epidemiologists, toxicologists and clinicians) were selected, of whom twelve attended. They were provided with a briefing book containing key literature. After a group discussion, individual expert judgments in the form of ratings of the likelihood of causal relationships and pathways were obtained using a confidence scheme adapted from the one used by the Intergovernmental Panel on Climate Change. RESULTS: The likelihood of an independent causal relationship between increased short-term UFP exposure and increased all-cause mortality, hospital admissions for cardiovascular and respiratory diseases, aggravation of asthma symptoms and lung function decrements was rated medium to high by most experts. The likelihood for long-term UFP exposure to be causally related to all cause mortality, cardiovascular and respiratory morbidity and lung cancer was rated slightly lower, mostly medium. The experts rated the likelihood of each of the six identified possible causal pathways separately. Out of these six, the highest likelihood was rated for the pathway involving respiratory inflammation and subsequent thrombotic effects. CONCLUSION: The overall medium to high likelihood rating of causality of health effects of UFP exposure and the high likelihood rating of at least one of the proposed causal mechanisms explaining associations between UFP and cardiac events, stresses the importance of considering UFP in future health impact assessments of (transport-related) air pollution, and the need for further research on UFP exposure and health effects.

7.
Environ Health Perspect ; 117(1): 105-11, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19165395

ABSTRACT

BACKGROUND: It has been hypothesized that ambient particulate air pollution is able to modify the autonomic nervous control of the heart, measured as heart rate variability (HRV). Previously we reported heterogeneous associations between particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and HRV across three study centers. OBJECTIVES: We evaluated whether exposure misclassification, effect modification by medication, or differences in particle composition could explain the inconsistencies. METHODS: Subjects with coronary heart disease visited clinics biweekly in Amsterdam, the Netherlands; Erfurt, Germany; and Helsinki, Finland for 6-8 months. The standard deviation (SD) of NN intervals on an electrocardiogram (ECG; SDNN) and high frequency (HF) power of HRV was measured with ambulatory ECG during paced breathing. Outdoor levels of PM2.5 were measured at a central site. In Amsterdam and Helsinki, indoor and personal PM2.5 were measured during the 24 hr preceding the clinic visit. PM2.5 was apportioned between sources using principal component analyses. We analyzed associations of indoor/personal PM2.5, elements of PM2.5, and source-specific PM2.5 with HRV using linear regression. RESULTS: Indoor and personal PM2.5 were not associated with HRV. Increased outdoor PM2.5 was associated with decreased SDNN and HF at lags of 2 and 3 days only among persons not using beta-blocker medication. Traffic-related PM2.5 was associated with decreased SDNN, and long-range transported PM2.5 with decreased SDNN and HF, most strongly among persons not using beta blockers. Indicators for PM2.5 from traffic and long-range transport were also associated with decreased HRV. CONCLUSIONS: Our results suggest that differences in the composition of particles, beta-blocker use, and obesity of study subjects may explain some inconsistencies among previous studies on HRV.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/therapeutic use , Heart Rate , Particle Size , Adult , Female , Humans , Male , Middle Aged
8.
J Expo Sci Environ Epidemiol ; 17(2): 124-33, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16519413

ABSTRACT

Epidemiological studies have established an association between outdoor levels of fine particles (PM2.5) and cardiovascular health. However, there is little information on the determinants of PM2.5 exposures among persons with cardiovascular disease, a potentially susceptible population group. Daily outdoor, indoor and personal PM2.5 and absorbance (proxy for elemental carbon) concentrations were measured among elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland, during the winter and spring of 1998-1999 within the framework of the ULTRA study. There were 37 non-smoking subjects in Amsterdam and 47 in Helsinki. In Amsterdam, where there were enough exposure events for analyses, exposure to environmental tobacco smoke (ETS) indoors was a major source of between-subject variation in PM2.5 exposures, and a strong determinant of PM2.5 and absorbance exposures. When the days with ETS were excluded, within-subject variation accounted for 89% of the total variation in personal PM2.5 and 97% in absorbance in Amsterdam. The respective figures were 66% and 61% in Helsinki. In both cities, outdoor levels of PM2.5 and absorbance were major determinants of personal and indoor levels. Traffic was also an important determinant of absorbance: living near a major street increased exposure by 22%, and every hour spent in a motor vehicle by 13% in Amsterdam. The respective increases were 37% and 9% in Helsinki. Cooking was associated with increased levels of both absorbance and PM2.5. Our results demonstrate that by using questionnaires in connection with outdoor measurements, exposure estimation of PM2.5 and its combustion originating fraction can be improved among elderly persons with compromised health.


Subject(s)
Air Pollutants/adverse effects , Air Pollution, Indoor/adverse effects , Coronary Disease/epidemiology , Environmental Pollution/adverse effects , Inhalation Exposure/adverse effects , Aged , Aged, 80 and over , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Cooking , Coronary Disease/etiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollution/analysis , Female , Finland/epidemiology , Humans , Inhalation Exposure/analysis , Male , Middle Aged , Netherlands/epidemiology , Particle Size , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/analysis , Vehicle Emissions
9.
J Air Waste Manag Assoc ; 57(12): 1507-17, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18200936

ABSTRACT

The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.


Subject(s)
Cities , Environmental Monitoring , Housing , Particulate Matter/analysis , Transportation , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Alabama , Finland , Greece , Netherlands , Particulate Matter/chemistry , Time Factors
10.
Environ Health Perspect ; 114(5): 655-60, 2006 May.
Article in English | MEDLINE | ID: mdl-16675416

ABSTRACT

Epidemiologic studies have shown that ambient particulate matter (PM) has adverse effects on cardiovascular health. Effective mitigation of the health effects requires identification of the most harmful PM sources. The objective of our study was to evaluate relative effects of fine PM [aerodynamic diameter0.1 mV, with odds ratios at 2-day lag of 1.53 [95% confidence interval (CI), 1.19-1.97] and 1.11 (95% CI, 1.02-1.20) per 1 microg/m3, respectively. In multipollutant models, where we used indicator elements for sources instead of source-specific PM2.5, only absorbance (elemental carbon), an indicator of local traffic and other combustion, was associated with ST segment depressions. Our results suggest that the PM fraction originating from combustion processes, notably traffic, exacerbates ischemic heart diseases associated with PM mass.


Subject(s)
Air Pollutants/toxicity , Exercise Test , Myocardial Ischemia/chemically induced , Particle Size , Aged , Humans , Middle Aged
11.
Res Rep Health Eff Inst ; (127): 1-70; discussion 71-9, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15916017

ABSTRACT

The aim of the investigation was to assess the relations between pairs of personal, indoor, and outdoor levels of fine particles and their components with respect to effects for older subjects with cardiovascular disease. In the framework of a study funded by the European Union (Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air; referred to as ULTRA)*, panel studies were conducted in Amsterdam (The Netherlands) and Helsinki (Finland). Concentrations of outdoor particulate matter 2.5 pm or smaller in aerodynamic diameter (PM2.5) were measured at a fixed site in each location. With HEI funding, each subject's personal and indoor PM2.5 exposure was measured every other week for 6 months during the 24-hour period preceding intensive health measurements. Particle reflectance was measured as a marker for diesel exhaust. Elemental content of more than 50% of the personal and indoor samples and all corresponding outdoor samples was measured using x-ray fluorescence (XRF). Ion content (sulfate, nitrate) was measured using chromatography. For Amsterdam, 337 personal and 409 indoor measurements were collected from 37 subjects; for Helsinki, 336 personal and 503 indoor measurements were collected from 47 subjects. Median personal, indoor, and outdoor PM2.5 concentrations were 13.6, 13.6, and 16.5 microg/m3 in Amsterdam and 9.2, 9.2, and 11.1 microg/m3 in Helsinki. In both cities, personal and indoor PM2.5 concentrations were lower than and highly correlated with outdoor concentrations (median correlation coefficient [R] 0.7-0.8). For most elements, personal and indoor concentrations were also highly correlated with outdoor concentrations. The highest correlations (median R > 0.9) were found for sulfur (S), sulfate, and particle reflectance (reported as the absorption coefficient). Reflectance was a useful proxy for elemental carbon (EC), but site-specific calibration with EC data is necessary. The findings of this study support using fixed-site measurements as a measure of exposure to PM in time-series studies linking the day-to-day variations in PM to the day-to-day variations in health endpoints, especially for components of PM that are generally associated with fine particles and have few indoor sources.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Cardiovascular Diseases , Aged , Aged, 80 and over , Female , Finland , Humans , Inhalation Exposure/statistics & numerical data , Male , Middle Aged , Netherlands , Particle Size
12.
J Environ Monit ; 7(4): 302-10, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15798796

ABSTRACT

Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Meteorological Concepts , Particle Size , Air Pollutants/chemistry , Cities , Environmental Exposure , Europe , Humans , Humidity , Regression Analysis , Seasons , Temperature , Urban Health , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...