Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 34(1): br1, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36350697

ABSTRACT

Dynein inactivates the spindle assembly checkpoint (SAC) by transporting checkpoint proteins away from kinetochores toward spindle poles in a process known as "stripping." We find that inhibition of Aurora A kinase, which is localized to spindle poles, enables the accumulation of the spindle checkpoint activator Mad1 at poles where it is normally absent. Aurora kinases phosphorylate the dynein activator NudE neurodevelopment protein 1 like 1 (Ndel1) on Ser285 and Mad1 accumulates at poles when Ndel1 is replaced by a nonphosphorylatable mutant in human cells. The pole focusing protein NuMA, transported to poles by dynein, also accumulates at poles in cells harboring a mutant Ndel1. Phosphorylation of Ndel1 on Ser285 is required for robust spindle checkpoint activity and regulates the poles of asters in Xenopus extracts. Our data suggest that dynein/SAC complexes that are generated at kinetochores and then transported directionally toward poles on microtubules are inhibited by Aurora A before they reach spindle poles. These data suggest that Aurora A generates a spatial signal at spindle poles that controls dynein transport and spindle function.


Subject(s)
Dyneins , Spindle Apparatus , Humans , Dyneins/metabolism , Spindle Apparatus/metabolism , Aurora Kinase A/metabolism , Kinetochores/metabolism , Cell Cycle Proteins/metabolism , Spindle Poles/metabolism , Microtubules/metabolism , Carrier Proteins/metabolism
2.
Science ; 377(6603): 292-297, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857592

ABSTRACT

Hematopoietic mosaic loss of Y chromosome (mLOY) is associated with increased risk of mortality and age-related diseases in men, but the causal and mechanistic relationships have yet to be established. Here, we show that male mice reconstituted with bone marrow cells lacking the Y chromosome display increased mortality and age-related profibrotic pathologies including reduced cardiac function. Cardiac macrophages lacking the Y chromosome exhibited polarization toward a more fibrotic phenotype, and treatment with a transforming growth factor ß1-neutralizing antibody ameliorated cardiac dysfunction in mLOY mice. A prospective study revealed that mLOY in blood is associated with an increased risk for cardiovascular disease and heart failure-associated mortality. Together, these results indicate that hematopoietic mLOY causally contributes to fibrosis, cardiac dysfunction, and mortality in men.


Subject(s)
Aging , Chromosome Deletion , Heart Failure , Hematopoietic Stem Cells , Myocardium , Y Chromosome , Aging/genetics , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Fibrosis , Heart Failure/genetics , Heart Failure/therapy , Macrophages , Male , Mice , Mosaicism , Myocardium/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Y Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...