Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 14: 3, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26733412

ABSTRACT

Consistent evidence associates IGF-1 deficiency and metabolic syndrome. In this review, we will focus on the metabolic effects of IGF-1, the concept of metabolic syndrome and its clinical manifestations (impaired lipid profile, insulin resistance, increased glucose levels, obesity, and cardiovascular disease), discussing whether IGF-1 replacement therapy could be a beneficial strategy for these patients. The search plan was made in Medline for Pubmed with the following mesh terms: IGF-1 and "metabolism, carbohydrate, lipids, proteins, amino acids, metabolic syndrome, cardiovascular disease, diabetes" between the years 1963-2015. The search includes animal and human protocols. In this review we discuss the relevant actions of IGF-1 on metabolism and the implication of IGF-1 deficiency in the establishment of metabolic syndrome. Multiple studies (in vitro and in vivo) demonstrate the association between IGF-1 deficit and deregulated lipid metabolism, cardiovascular disease, diabetes, and an altered metabolic profile of diabetic patients. Based on the available data we propose IGF-1 as a key hormone in the pathophysiology of metabolic syndrome; due to its implications in the metabolism of carbohydrates and lipids. Previous data demonstrates how IGF-1 can be an effective option in the treatment of this worldwide increasing condition. It has to distinguished that the replacement therapy should be only undertaken to restore the physiological levels, never to exceed physiological ranges.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Metabolic Syndrome/metabolism , Animals , Carbohydrate Metabolism , Humans , Insulin Resistance , Lipid Metabolism , Models, Biological
2.
J Transl Med ; 13: 326, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26467524

ABSTRACT

BACKGROUND: Insulin growth factor 1 (IGF-1) has multiple effects on metabolism. Much evidence suggests that the deficiency of this hormone increases insulin resistance, impairs lipid metabolism, augments oxidative damage and deregulates the neuro-hormonal axis. An inverse relationship between IGF-1 levels and the prevalence of Metabolic Syndrome (MetS) with its cardiovascular complications has been identified. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. In order to elucidate such mechanisms, the aim of this work was to study, in mice with partial IGF-1 deficiency, liver expression of genes involved in glucose and lipid metabolism as well as serum levels of glucose, triglycerides and cholesterol, as well as liver malondialdehyde (MDA) levels, as a marker for oxidative damage. METHODS: Three experimental groups were studied in parallel: Controls (CO), wild type mice (igf-1 (+/+)); untreated heterozygous mice (Hz, igf-1 (+/-)) and Hz (igf-1 (+/-)) mice treated with low doses of IGF-1 for 10 days (Hz + IGF-1). RESULTS: A reduction of IGF-1 serum levels in the Hz group was found, which was normalized by IGF-1 therapy. Serum levels of glucose, triglycerides and cholesterol were significantly increased in the untreated Hz group as compared to both controls and Hz + IGF-1 groups. The expression of genes involved in gluconeogenesis, glycogenolysis, lipid synthesis and transport, and catabolism were altered in untreated Hz animals and the expression of most of them was normalized by IGF-1 therapy; MDA was also significantly increased in the Hz untreated group. CONCLUSIONS: The mere partial IGF-1 deficiency is responsible for the reduction in the expression of genes involved in glucose and lipid metabolism, resulting in dyslipidemia and hyperglycemia. Such genetic alterations may seriously contribute to the establishment of MetS.


Subject(s)
Carbohydrate Metabolism/genetics , Disease Models, Animal , Glucose/metabolism , Insulin-Like Growth Factor I/genetics , Lipid Metabolism/genetics , Liver/metabolism , Metabolic Syndrome/genetics , Animals , Body Weight , Fatty Acids/metabolism , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Knockout , Organ Size , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...