Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(1): 142-151, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36183146

ABSTRACT

BACKGROUND: Eye plaque brachytherapy is currently an optimal therapy for intraocular cancers. Due to the lack of an effective and practical technique to measure the seed radioactivity distribution, current quality assurance (QA) practice according to the American Association of Physicists in Medicine TG129 only stipulates that the plaque assembly be visually inspected. Consequently, uniform seed activity is routinely adopted to avoid possible loading mistakes of differential seed loading. However, modulated dose delivery, which represents a general trend in radiotherapy to provide more personalized treatment for a given tumor and patient, requires differential activities in the loaded seeds. PURPOSE: In this study, a fast and low-cost radio-luminescent imaging and dose calculating system to verify the seed activity distribution for differential loading was developed. METHODS: A proof-of-concept system consisting of a thin scintillator sheet coupled to a camera/lens system was constructed. A seed-loaded plaque can be placed directly on the scintillator surface with the radioactive seeds facing the scintillator. The camera system collects the radioluminescent signal generated by the scintillator on its opposite side. The predicted dose distribution in the scintillator's sensitive layer was calculated using a Monte Carlo simulation with the planned plaque loading pattern of I-125 seeds. Quantitative comparisons of the distribution of relative measured signal intensity and that of the relative predicted dose in the sensitive layer were performed by gamma analysis, similar to intensity-modulated radiation therapy QA. RESULTS: Data analyses showed high gamma (3%/0.3 mm, global, 20% threshold) passing rates for correct seed loadings and low passing rates with distinguished high gamma value area for incorrect loadings, indicating that possible errors may be detected. The measurement and analysis only required a few extra minutes, significantly shorter than the time to assay the extra verification seeds the physicist already must perform as recommended by TG129. CONCLUSIONS: Radio-luminescent QA can be used to facilitate and assure the implementation of intensity-modulated, customized plaque loading.


Subject(s)
Brachytherapy , Eye Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Brachytherapy/methods , Monte Carlo Method , Eye Neoplasms/radiotherapy , Radiometry/methods
2.
Med Phys ; 36(11): 5099-106, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19994520

ABSTRACT

Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through 192Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 degrees, the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.


Subject(s)
Brachytherapy/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Imaging, Three-Dimensional/methods , Ultrasonography, Mammary/methods , Catheterization/methods , Catheters, Indwelling , Female , Humans , Imaging, Three-Dimensional/instrumentation , Iridium Radioisotopes/therapeutic use , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Ultrasonography, Mammary/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...