Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 3187, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453370

ABSTRACT

Mycobacterium tuberculosis, the etiological agent of the infectious disease tuberculosis, kills approximately 1.5 million people annually, while the spread of multidrug-resistant strains is of great global concern. Thus, continuous efforts to identify new antitubercular drugs as well as novel targets are crucial. Recently, two prodrugs activated by the monooxygenase EthA, 7947882 and 7904688, which target the CTP synthetase PyrG, were identified and characterized. In this work, microbiological, biochemical, and in silico methodologies were used to demonstrate that both prodrugs possess a second target, the pantothenate kinase PanK. This enzyme is involved in coenzyme A biosynthesis, an essential pathway for M. tuberculosis growth. Moreover, compound 11426026, the active metabolite of 7947882, was demonstrated to directly inhibit PanK, as well. In an independent screen of a compound library against PyrG, two additional inhibitors were also found to be active against PanK. In conclusion, these direct PyrG and PanK inhibitors can be considered as leads for multitarget antitubercular drugs and these two enzymes could be employed as a "double-tool" in order to find additional hit compounds.


Subject(s)
Carbon-Nitrogen Ligases/drug effects , Drug Discovery/methods , Phosphotransferases (Alcohol Group Acceptor)/drug effects , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Computer Simulation , Humans , Models, Molecular , Mycobacterium tuberculosis/enzymology , Tuberculosis/drug therapy
2.
Chem Biol ; 22(7): 917-27, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26097035

ABSTRACT

To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.


Subject(s)
Antitubercular Agents/pharmacology , Carbon-Nitrogen Ligases/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/metabolism , Thiophenes/pharmacology , Activation, Metabolic , Animals , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Drug Design , Drug Evaluation, Preclinical/methods , Hep G2 Cells , High-Throughput Screening Assays/methods , Humans , Mice , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Oxidoreductases/chemistry , Protein Conformation , Thiophenes/chemistry
3.
ACS Chem Biol ; 10(3): 705-14, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25427196

ABSTRACT

Phenotypic screening of a quinoxaline library against replicating Mycobacterium tuberculosis led to the identification of lead compound Ty38c (3-((4-methoxybenzyl)amino)-6-(trifluoromethyl)quinoxaline-2-carboxylic acid). With an MIC99 and MBC of 3.1 µM, Ty38c is bactericidal and active against intracellular bacteria. To investigate its mechanism of action, we isolated mutants resistant to Ty38c and sequenced their genomes. Mutations were found in rv3405c, coding for the transcriptional repressor of the divergently expressed rv3406 gene. Biochemical studies clearly showed that Rv3406 decarboxylates Ty38c into its inactive keto metabolite. The actual target was then identified by isolating Ty38c-resistant mutants of an M. tuberculosis strain lacking rv3406. Here, mutations were found in dprE1, encoding the decaprenylphosphoryl-d-ribose oxidase DprE1, essential for biogenesis of the mycobacterial cell wall. Genetics, biochemical validation, and X-ray crystallography revealed Ty38c to be a noncovalent, noncompetitive DprE1 inhibitor. Structure-activity relationship studies generated a family of DprE1 inhibitors with a range of IC50's and bactericidal activity. Co-crystal structures of DprE1 in complex with eight different quinoxaline analogs provided a high-resolution interaction map of the active site of this extremely vulnerable target in M. tuberculosis.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Quinoxalines/pharmacology , Small Molecule Libraries/pharmacology , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Antitubercular Agents/chemical synthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cell Wall/drug effects , Cell Wall/enzymology , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Gene Expression , Hydrogen Bonding , Microbial Sensitivity Tests , Models, Molecular , Mutation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Quinoxalines/chemical synthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
4.
Eur J Med Chem ; 70: 37-48, 2013.
Article in English | MEDLINE | ID: mdl-24140915

ABSTRACT

We report here the discovery, synthesis and screening results of a series of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives as a novel class of potent inhibitors of Mycobacterium tuberculosis H37Rv strain as well as the enoyl acyl carrier protein reductase (ENR) InhA. Among them, several compounds displayed good activities against InhA which is one of the key enzymes involved in the type II fatty acid biosynthesis pathway of the mycobacteria cell wall. Furthermore, some exhibited promising activities against M. tuberculosis and multi-drug resistant M. tuberculosis strains.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Pyrrolidinones/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Kinetics , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Oxidoreductases/metabolism , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Structure-Activity Relationship
5.
FEMS Microbiol Lett ; 348(1): 66-73, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24024613

ABSTRACT

Among the species of the Mycobacterium genus, more than 50 have been recognized as human pathogens. In spite of the different diseases caused by mycobacteria, the interspecies genetic similarity ranges from 94% to 100%, and for some species, this value is higher than in other bacteria. Consequently, it is important to understand the relationships existing among mycobacterial species. In this context, the possibility to use Mycobacterium tuberculosis dprE1 gene as new phylogenetic/taxonomic marker has been explored. The dprE1 gene codes for the target of benzothiazinones, belonging to a very promising class of antitubercular drugs. Mutations in cysteine 387 of DprE1 are responsible for benzothiazinone resistance. The DprE1 tree, obtained with 73 amino acid sequences of mycobacterial species, revealed that concerning the benzothiazinone sensitivity/resistance, it is possible to discriminate two clusters. To validate it, a concatamer obtained from the amino acid sequences of nine mycobacterial housekeeping genes was performed. The concatamer revealed that there is no separation between the benzothiazinone-susceptible and benzothiazinone-resistant species; consequently, this parameter is not linked to the phylogeny. DprE1 tree might represent a good taxonomic marker for the assignment of a mycobacterial isolate to a species. Moreover, the concatamer represents a good reference phylogeny for the Mycobacterium genus.


Subject(s)
Bacterial Proteins/genetics , Mycobacterium/classification , Mycobacterium/genetics , Oxidoreductases/genetics , Alcohol Oxidoreductases , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology
6.
Appl Microbiol Biotechnol ; 94(4): 907-16, 2012 May.
Article in English | MEDLINE | ID: mdl-22526781

ABSTRACT

Multidrug resistance is a major barrier in the battle against tuberculosis and still a leading cause of death worldwide. In order to fight this pathogen, two routes are practicable: vaccination or drug treatment. Vaccination against Mycobacterium tuberculosis with the current vaccine Mycobacterium bovis Bacillus Calmette-Guerin is partially successful, being its efficacy variable. A few new tuberculosis vaccines are now in various phases of clinical trials. The emergence of multidrug-resistant strains of M. tuberculosis gave the impulse to discover new effective antitubercular drugs, a few of which are in clinical development. Here we focus on three different classes of very promising antitubercular drugs recently discovered (benzothiazinones, dinitrobenzamides, and benzoquinoxalines) that share the same cellular target: a subunit of the heteromeric decaprenylphosphoryl-ß-D: -ribose 2'-epimerase, encoded by the dprE1 (or Rv3790) gene. This enzyme is involved in the biosynthesis of D: -arabinose which is crucial for the synthesis of the mycobacterial cell wall and essential for the pathogen's survival.


Subject(s)
Antitubercular Agents/pharmacology , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Oxidoreductases/antagonists & inhibitors , Racemases and Epimerases/antagonists & inhibitors , Arabinose/antagonists & inhibitors , Arabinose/biosynthesis , Mycobacterium bovis , Mycobacterium tuberculosis/metabolism , Quinoxalines/pharmacology
7.
Microb Drug Resist ; 18(1): 23-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21797666

ABSTRACT

Efflux transporters have a considerable role in the multidrug resistance (MDR) of Pseudomonas aeruginosa, an important nosocomial pathogen. In this study, 45 P. aeruginosa clinical strains, with an MDR phenotype, have been isolated in a hospital of Northern Italy and characterized to identify the mechanisms responsible for their fluoroquinolone (FQ) resistance. These isolates were analyzed for clonal similarity, mutations in genes encoding the FQ targets, overexpression of specific Resistance Nodulation-cell Division efflux pumps, and search for mutations in their regulatory genes. The achieved results suggested that the mutations in genes encoding ciprofloxacin targets represented the main mechanism of FQ resistance of these strains; 97.8% of these isolates showed mutations in gyrA, 28.9% in gyrB, 88.9% in parC, and 6.7% in parE. Another mechanism of resistance was overexpression of the efflux pumps in some representative strains. In particular, overexpression of MexXY-OprM drug transporter was found in five isolates, whereas overexpression of MexCD-OprJ was detected in two isolates; surprisingly, in one of these last two isolates, also overexpression of MexAB-OprM pump was identified.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Fluoroquinolones/pharmacology , Membrane Transport Proteins/genetics , Pseudomonas aeruginosa/genetics , DNA Gyrase/genetics , Gene Expression Regulation, Bacterial , Genes, Regulator , Humans , Microbial Sensitivity Tests , Mutation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...