Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Pancreatology ; 24(3): 394-403, 2024 May.
Article in English | MEDLINE | ID: mdl-38493004

ABSTRACT

BACKGROUND: Many affected by pancreatitis harbor rare variants of the cystic fibrosis (CF) gene, CFTR, which encodes an epithelial chloride/bicarbonate channel. We investigated CFTR function and the effect of CFTR modulator drugs in pancreatitis patients carrying CFTR variants. METHODS: Next-generation sequencing was performed to identify CFTR variants. Sweat tests and nasal potential difference (NPD) assays were performed to assess CFTR function in vivo. Intestinal current measurement (ICM) was performed on rectal biopsies. Patient-derived intestinal epithelial monolayers were used to evaluate chloride and bicarbonate transport and the effects of a CFTR modulator combination: elexacaftor, tezacaftor and ivacaftor (ETI). RESULTS: Of 32 pancreatitis patients carrying CFTR variants, three had CF-causing mutations on both alleles and yielded CF-typical sweat test, NPD and ICM results. Fourteen subjects showed a more modest elevation in sweat chloride levels, including three that were provisionally diagnosed with CF. ICM indicated impaired CFTR function in nine out of 17 non-CF subjects tested. This group of nine included five carrying a wild type CFTR allele. In epithelial monolayers, a reduction in CFTR-dependent chloride transport was found in six out of 14 subjects tested, whereas bicarbonate secretion was reduced in only one individual. In epithelial monolayers of four of these six subjects, ETI improved CFTR function. CONCLUSIONS: CFTR function is impaired in a subset of pancreatitis patients carrying CFTR variants. Mutations outside the CFTR locus may contribute to the anion transport defect. Bioassays on patient-derived intestinal tissue and organoids can be used to detect such defects and to assess the effect of CFTR modulators.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Pancreatitis , Humans , Bicarbonates/metabolism , Chlorides , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation , Pancreatitis/genetics , Pancreatitis/metabolism , Quinolones
2.
Cell Mol Biol Lett ; 29(1): 18, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262945

ABSTRACT

BACKGROUND: Loss of CFTR-dependent anion and fluid secretion in the ducts of the exocrine pancreas is thought to contribute to the development of pancreatitis, but little is known about the impact of inflammation on ductal CFTR function. Here we used adult stem cell-derived cell cultures (organoids) obtained from porcine pancreas to evaluate the effects of pro-inflammatory cytokines on CFTR function. METHODS: Organoids were cultured from porcine pancreas and used to prepare ductal epithelial monolayers. Monolayers were characterized by immunocytochemistry. Epithelial bicarbonate and chloride secretion, and the effect of IL-1ß, IL-6, IFN-γ, and TNF-α on CFTR function was assessed by electrophysiology. RESULTS: Immunolocalization of ductal markers, including CFTR, keratin 7, and zonula occludens 1, demonstrated that organoid-derived cells formed a highly polarized epithelium. Stimulation by secretin or VIP triggered CFTR-dependent anion secretion across epithelial monolayers, whereas purinergic receptor stimulation by UTP, elicited CFTR-independent anion secretion. Most of the anion secretory response was attributable to bicarbonate transport. The combination of IL-1ß, IL-6, IFN-γ, and TNF-α markedly enhanced CFTR expression and anion secretion across ductal epithelial monolayers, whereas these cytokines had little effect when tested separately. Although TNF-α triggered apoptotic signaling, epithelial barrier function was not significantly affected by cytokine exposure. CONCLUSIONS: Pro-inflammatory cytokines enhance CFTR-dependent anion secretion across pancreatic ductal epithelium. We propose that up-regulation of CFTR in the early stages of the inflammatory response, may serve to promote the removal of pathogenic stimuli from the ductal tree, and limit tissue injury.


Subject(s)
Bicarbonates , Cytokines , Swine , Animals , Tumor Necrosis Factor-alpha , Cystic Fibrosis Transmembrane Conductance Regulator , Interleukin-6 , Epithelium
3.
EBioMedicine ; 88: 104431, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608526

ABSTRACT

BACKGROUND: Ischemia of the bile duct is a common feature in liver disease and transplantation, which represents a major cause of morbidity and mortality, especially after liver transplantation. Detailed knowledge of its pathogenesis remains incomplete due to the lack of appropriate in vitro models. METHODS: To recapitulate biliary damage induced by ischemia and reperfusion in vitro, human intrahepatic cholangiocyte organoids (ICOs) were grown at low oxygen levels of 1% up to 72 h, followed by re-oxygenation at normal levels. FINDINGS: ICOs stressed by ischemia and subsequent re-oxygenation represented the dynamic change in biliary cell proliferation, upregulation of epithelial-mesenchymal transition (EMT)-associated markers, and the evocation of phase-dependent cell death programs similar to what is described in patients. Clinical-grade alpha-1 antitrypsin was identified as a potent inhibitor of both ischemia-induced apoptosis and necroptosis. INTERPRETATION: These findings demonstrate that ICOs recapitulate ischemic cholangiopathy in vitro and enable drug assessment studies for the discovery of new therapeutics for ischemic cholangiopathies. FUNDING: Dutch Digestive FoundationMLDS D16-26; TKI-LSH (Topconsortium Kennis en Innovatie-Life Sciences & Health) grant RELOAD, EMC-LSH19002; Medical Delta program "Regenerative Medicine 4D"; China Scholarship Council No. 201706230252.


Subject(s)
Bile Ducts , Ischemia , Humans , Ischemia/metabolism , Apoptosis , Epithelial Cells , Organoids
4.
Sci Rep ; 12(1): 6593, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449374

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Defective CFTR leads to accumulation of dehydrated viscous mucus within the small intestine, luminal acidification and altered intestinal motility, resulting in blockage. These changes promote gut microbial dysbiosis, adversely influencing the normal proliferation and differentiation of intestinal epithelial cells. Using Illumina 16S rRNA gene sequencing and immunohistochemistry, we assessed changes in mucosa-attached microbiome and epithelial cell profile in the small intestine of CF mice and a CF patient compared to wild-type mice and non-CF humans. We found increased abundance of pro-inflammatory Escherichia and depletion of beneficial secondary bile-acid producing bacteria in the ileal mucosa-attached microbiome of CFTR-null mice. The ileal mucosa in a CF patient was dominated by a non-aeruginosa Pseudomonas species and lacked numerous beneficial anti-inflammatory and short-chain fatty acid-producing bacteria. In the ileum of both CF mice and a CF patient, the number of absorptive enterocytes, Paneth and glucagon-like peptide 1 and 2 secreting L-type enteroendocrine cells were decreased, whereas stem and goblet cell numbers were increased. These changes in mucosa-attached microbiome and epithelial cell profile suggest that microbiota-host interactions may contribute to intestinal CF disease development with implications for therapy.


Subject(s)
Cystic Fibrosis , Intestinal Diseases , Microbiota , Animals , Bacteria/genetics , Cell Count , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Goblet Cells , Humans , Intestinal Diseases/complications , Intestinal Mucosa/microbiology , Intestine, Small/microbiology , Mice , RNA, Ribosomal, 16S/genetics
5.
J Pers Med ; 12(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35455747

ABSTRACT

BACKGROUND: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. METHODS: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl- and HCO3- secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. RESULTS: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. CONCLUSIONS: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl- and HCO3- transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations.

6.
J Cyst Fibros ; 21(3): 537-543, 2022 05.
Article in English | MEDLINE | ID: mdl-34922851

ABSTRACT

BACKGROUND: In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on chloride transport, also restores Phe508del-CFTR-mediated bicarbonate transport. METHODS: Epithelial monolayers were cultured from intestinal and biliary (cholangiocyte) organoids of homozygous Phe508del-CFTR patients and controls. Transcriptome sequencing was performed, and bicarbonate and chloride transport were assessed in the presence or absence of ELX/IVA/TEZ, using the intestinal current measurement technique. RESULTS: ELX/IVA/TEZ markedly enhanced bicarbonate and chloride transport across intestinal epithelium. In biliary epithelium, it failed to enhance CFTR-mediated bicarbonate transport but effectively rescued CFTR-mediated chloride transport, known to be requisite for bicarbonate secretion through the chloride-bicarbonate exchanger AE2 (SLC4A2), which was highly expressed by cholangiocytes. Biliary but not intestinal epithelial cells expressed an alternative anion channel, anoctamin-1/TMEM16A (ANO1), and secreted bicarbonate and chloride upon purinergic receptor stimulation. CONCLUSIONS: ELX/IVA/TEZ has the potential to restore both chloride and bicarbonate secretion across CF intestinal and biliary epithelia and may counter luminal hyper-acidification in these tissues.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols/pharmacology , Benzodioxoles , Bicarbonates , Chloride Channel Agonists/pharmacology , Chloride-Bicarbonate Antiporters/genetics , Chlorides , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Epithelial Cells , Humans , Indoles , Organoids , Pyrazoles , Pyridines , Pyrrolidines , Quinolones
7.
Clin Transl Gastroenterol ; 12(11): e00427, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34797252

ABSTRACT

INTRODUCTION: Gain-of-function mutations in guanylyl cyclase C (GCC) result in persistent diarrhea with perinatal onset. We investigated a specific GCC inhibitor, SSP2518, for its potential to treat this disorder. METHODS: We investigated the effect of SSP2518 on GCC-mediated intracellular cyclic guanosine monophosphate (cGMP) levels and on GCC-mediated chloride secretion in intestinal organoids from 3 patients with distinct activating GCC mutations and from controls, with and without stimulation of GCC with heat-stable enterotoxin. RESULTS: Patient-derived organoids had significantly higher basal cGMP levels than control organoids, which were lowered by SSP2518 to levels found in control organoids. In addition, SSP2518 significantly reduced cGMP levels and chloride secretion in patient-derived and control organoids (P < 0.05 for all comparisons) after heat-stable enterotoxin stimulation. DISCUSSION: We reported in this study that the GCC inhibitor SSP2518 normalizes cGMP levels in intestinal organoids derived from patients with GCC gain-of-function mutations and markedly reduces cystic fibrosis transmembrane conductance regulator-dependent chloride secretion, the driver of persistent diarrhea.


Subject(s)
Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/genetics , Diarrhea/congenital , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/genetics , Receptors, Enterotoxin/antagonists & inhibitors , Abnormalities, Multiple/metabolism , Cyclic GMP/metabolism , Diarrhea/drug therapy , Diarrhea/genetics , Diarrhea/metabolism , Gain of Function Mutation , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Metabolism, Inborn Errors/metabolism , Receptors, Enterotoxin/genetics
8.
Food Funct ; 12(4): 1829-1840, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33527946

ABSTRACT

Uridine (UR) is a pyrimidine nucleoside that plays an important role in regulating glucose and lipid metabolism. The aim of this study was to investigate the effect of UR on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet (HFD)-fed mice. ICR mice were, respectively, divided into 3 groups for 8 weeks, that is, control (CON, n = 12), high fat diet (HFD, n = 16), and HFD + UR groups (0.4 mg mL-1 in drinking water, n = 16). UR supplementation significantly reduced the body weight and suppressed the accumulation of subcutaneous, epididymal, and mesenteric WAT in HFD-fed mice (P < 0.05). Meanwhile, UR also decreased the lipid droplet accumulation in the liver and liver organoids (P < 0.05). In addition, UR supplementation increased bacterial diversity and Bacteroidetes abundance, and decreased the Firmicutes-to-Bacteroidetes ratio in HFD-fed mice significantly (P < 0.05). UR promoted the growth of butyrate-producing bacteria of Odoribacter, unidentified-Ruminococcaceae, Intestinimonas, Ruminiclostridium, and unidentified-Lachnospiraceae. A close correlation between several specific bacterial phyla or genera and the levels of WAT weight, hepatic TC, or hepatic TG genera was revealed through Spearman's correlation analysis. These results demonstrated that UR supplementation could be beneficial by attenuating HFD-induced obesity and nonalcoholic fatty liver disease.


Subject(s)
Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Liver/drug effects , Obesity/metabolism , Uridine/pharmacology , Animals , Diet, High-Fat , Liver/metabolism , Male , Mice , Mice, Inbred ICR
9.
Biotechnol Bioeng ; 118(2): 836-851, 2021 02.
Article in English | MEDLINE | ID: mdl-33118611

ABSTRACT

Biliary disorders can lead to life-threatening disease and are also a challenging complication of liver transplantation. As there are limited treatment options, tissue engineered bile ducts could be employed to replace or repair damaged bile ducts. We explored how these constructs can be created by seeding hepatobiliary LGR5+ organoids onto tissue-specific scaffold. For this, we decellularized discarded human extrahepatic bile ducts (EBD) that we recellularized with organoids of different origin, that is, liver biopsies, extrahepatic bile duct biopsies, and bile samples. Here, we demonstrate efficient decellularization of EBD tissue. Recellularization of the EBD extracellular matrix (ECM) with the organoids of extrahepatic origin (EBD tissue and bile derived organoids) showed more profound repopulation of the ductal ECM when compared with liver tissue (intrahepatic bile duct) derived organoids. The bile duct constructs that were repopulated with extrahepatic organoids expressed mature cholangiocyte-markers and had increased electrical resistance, indicating restoration of the barrier function. Therefore, the organoids of extrahepatic sources are identified to be the optimal candidate for the development of personalized tissue engineered EBD constructs.


Subject(s)
Bile Ducts, Extrahepatic/chemistry , Epithelial Cells/metabolism , Extracellular Matrix/chemistry , Organoids/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Epithelial Cells/cytology , Humans , Organoids/cytology
10.
Cells ; 11(1)2021 12 24.
Article in English | MEDLINE | ID: mdl-35011616

ABSTRACT

CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.


Subject(s)
Bicarbonates/metabolism , Cystic Fibrosis/metabolism , Pancreatitis/metabolism , Animals , Biological Transport , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation/genetics , Pancreatitis/genetics
11.
Sci Rep ; 10(1): 21900, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318612

ABSTRACT

The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.


Subject(s)
Bile Duct Diseases/metabolism , Bile Ducts, Intrahepatic/metabolism , Cell Differentiation , Cystic Fibrosis/metabolism , Organoids/metabolism , Adolescent , Bile Duct Diseases/pathology , Bile Ducts, Intrahepatic/pathology , Cystic Fibrosis/pathology , Humans , Male , Organoids/pathology
12.
FEBS Lett ; 594(23): 4085-4108, 2020 12.
Article in English | MEDLINE | ID: mdl-33113586

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter. It acts as an anion-selective channel that drives osmotic fluid transport across many epithelia. In the gut, CFTR is crucial for maintaining fluid and acid-base homeostasis, and its activity is tightly controlled by multiple neuro-endocrine factors. However, microbial toxins can disrupt this intricate control mechanism and trigger protracted activation of CFTR. This results in the massive faecal water loss, metabolic acidosis and dehydration that characterize secretory diarrhoeas, a major cause of malnutrition and death of children under 5 years of age. Compounds that inhibit CFTR could improve emergency treatment of diarrhoeal disease. Drawing on recent structural and functional insight, we discuss how existing CFTR inhibitors function at the molecular and cellular level. We compare their mechanisms of action to those of inhibitors of related ABC transporters, revealing some unexpected features of drug action on CFTR. Although challenges remain, especially relating to the practical effectiveness of currently available CFTR inhibitors, we discuss how recent technological advances might help develop therapies to better address this important global health need.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diarrhea/drug therapy , Diarrhea/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Humans , Intestinal Mucosa/metabolism , Models, Molecular , Protein Domains
13.
J Cyst Fibros ; 19(6): 955-961, 2020 11.
Article in English | MEDLINE | ID: mdl-32499204

ABSTRACT

BACKGROUND: The natural food supplements curcumin and genistein, and the drug ivacaftor were found effective as CFTR potentiators in the organoids of individuals carrying a S1251N gating mutation, possibly in a synergistic fashion. Based on these in vitro findings, we evaluated the clinical efficacy of a treatment with curcumin, genistein and ivacaftor, in different combinations. METHODS: In three multi-center trials people with CF carrying the S1251N mutation were treated for 8 weeks with curcumin+genistein, ivacaftor and ivacaftor+genistein. We evaluated change in lung function, sweat chloride concentration, CFQ-r, BMI and fecal elastase to determine the clinical effect. We evaluated the pharmacokinetic properties of the compounds by evaluating the concentration in plasma collected after treatment and the effect of the same plasma on the intestinal organoids. RESULTS: A clear clinical effect of treatment with ivacaftor was observed, evidenced by a significant improvement in clinical parameters. In contrast we observed no clear clinical effect of curcumin and/or genistein, except for a small but significant reduction in sweat chloride and airway resistance. Plasma concentrations of the food supplements were low, as was the response of the organoids to this plasma. CONCLUSIONS: We observed a clear clinical effect of treatment with ivacaftor, which is in line with the high responsiveness of the intestinal organoids to this drug. No clear clinical effect was observed of the treatment with curcumin and/or genistein, the low plasma concentration of these compounds emphasizes that pharmacokinetic properties of a compound have to be considered when in vitro experiments are performed.


Subject(s)
Aminophenols/pharmacokinetics , Chloride Channel Agonists/pharmacokinetics , Curcumin/pharmacokinetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Genistein/pharmacokinetics , Quinolones/pharmacokinetics , Adolescent , Adult , Child , Cystic Fibrosis/genetics , Female , Humans , Male , Organoids/drug effects
14.
Antiviral Res ; 180: 104823, 2020 08.
Article in English | MEDLINE | ID: mdl-32485209

ABSTRACT

Although rotavirus infection is usually acute and self-limiting, it can cause chronic infection with severe diseases in immunocompromised patients, including organ transplantation recipients and cancer patients irrespective of pediatric or adult patients. Since no approved medication against rotavirus infection is available, this study screened a library of safe-in-man broad-spectrum antivirals. We identified gemcitabine, a widely used anti-cancer drug, as a potent inhibitor of rotavirus infection. We confirmed this effect in 2D cell cultures and 3D cultured human intestinal organoids with both laboratory-adapted rotavirus strains and five clinical isolates. Supplementation of UTP or uridine largely abolished the anti-rotavirus activity of gemcitabine, suggesting its function through inhibition of pyrimidine biosynthesis pathway. Our results support repositioning of gemcitabine for treating rotavirus infection, especially for infected cancer patients.


Subject(s)
Antiviral Agents/pharmacology , Deoxycytidine/analogs & derivatives , Pyrimidines/biosynthesis , Rotavirus/drug effects , Animals , Biosynthetic Pathways , Caco-2 Cells , Deoxycytidine/pharmacology , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Intestines/drug effects , Intestines/virology , Macaca mulatta/virology , Organoids/drug effects , Organoids/virology , Rotavirus Infections/virology , Small Molecule Libraries , Gemcitabine
15.
J Cyst Fibros ; 19(6): 1021-1026, 2020 11.
Article in English | MEDLINE | ID: mdl-32451204

ABSTRACT

BACKGROUND: Chronic inflammation is a hallmark among patients with cystic fibrosis (CF). We explored whether mutation-induced (F508del) misfolding of the cystic fibrosis transmembrane conductance regulator (CFTR), and/or secondary colonization with opportunistic pathogens, activate tissue remodeling and innate immune response drivers. METHODS: Using RNA-seq to interrogate global gene expression profiles, we analyzed stress response signaling cascades in primary human bronchial epithelia (HBE) and intestinal organoids. RESULTS: Primary HBE acquired from CF patients with advanced disease and prolonged exposure to pathogenic microorganisms display a clear molecular signature of activated tissue remodeling pathways, unfolded protein response (UPR), and chronic inflammation. Furthermore, CFTR misfolding induces inflammatory signaling cascades in F508del patient-derived organoids from both the distal small intestine and colon. CONCLUSION: Despite the small patient cohort size, this proof-of-principle study supports the use of RNA-seq as a means to both identify CF-specific signaling profiles in various tissues and evaluate disease heterogeneity. Our global transcriptomic data is a useful resource for the CF research community for analyzing other gene expression sets influencing CF disease signature but also transcriptionally contributing to CF heterogeneity.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Endoplasmic Reticulum Stress/genetics , Gene Expression Profiling , Immunity, Innate , Adult , Bronchi/cytology , Cells, Cultured , Epithelial Cells , Female , Humans , Inflammation , Middle Aged , Organoids , Proof of Concept Study , Signal Transduction , Symptom Flare Up , Transcriptome
16.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963683

ABSTRACT

Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae family), commonly known as the red angico tree, is a medicinal plant found throughout Brazil's semi-arid area. In this study, a chemical analysis was performed to investigate the antidiarrheal activity and safety profile of red angico gum (RAG), a biopolymer extracted from the trunk exudate of A. colubrina. Upon FT-IR spectroscopy, RAG showed bands in the regions of 1608 cm-1, 1368 cm-1, and 1029 cm-1, which relate to the vibration of O-H water molecules, deformation vibration of C-O bands, and vibration of the polysaccharide C-O band, respectively, all of which are relevant to glycosidic bonds. The peak molar mass of RAG was 1.89 × 105 g/mol, with the zeta potential indicating electronegativity. RAG demonstrated high yield and solubility with a low degree of impurity. Pre-treatment with RAG reduced the total diarrheal stool and enteropooling. RAG also enhanced Na+/K+-ATPase activity and reduced gastrointestinal transit, and thereby inhibited intestinal smooth muscle contractions. Enzyme-Linked Immunosorbent Assay (ELISA) demonstrated that RAG can interact with GM1 receptors and can also reduce E. coli-induced diarrhea in vivo. Moreover, RAG did not induce any signs of toxicity in mice. These results suggest that RAG is a possible candidate for the treatment of diarrheal diseases.

17.
Article in English | MEDLINE | ID: mdl-31470114

ABSTRACT

BACKGROUND & AIMS: The bile acid (BA)-activated farnesoid X receptor (FXR) controls hepatic BA synthesis and cell proliferation via the intestinal hormone fibroblast growth factor 19. Because cystic fibrosis (CF) is associated with intestinal dysbiosis, anomalous BA handling, and biliary cirrhosis, we investigated FXR signaling in CF. METHODS: Intestinal and hepatic expression of FXR target genes and inflammation markers was assessed in Cftr null mice and controls. Localization of the apical sodium-dependent BA transporter was assessed, and BAs in gastrointestinal tissues were analyzed. The CF microbiota was characterized and FXR signaling was investigated in intestinal tissue and organoids. RESULTS: Ileal murine fibroblast growth factor 19 ortholog (Fgf15) expression was strongly reduced in CF mice, compared with controls. Luminal BA levels and localization of apical sodium-dependent BA transporter was not affected, and BAs induced Fgf15 up to normal levels in CF ileum, ex vivo, and CF organoids. CF mice showed a dysbiosis that was associated with a marked up-regulation of genes involved in host-microbe interactions, including those involved in mucin glycosylation, antimicrobial defense, and Toll-like receptor signaling. Antibiotic treatment reversed the up-regulation of inflammatory markers and restored intestinal FXR signaling in CF mice. Conversely, FXR-dependent gene induction in ileal tissue and organoids was repressed by bacterial lipopolysaccharide and proinflammatory cytokines, respectively. Loss of intestinal FXR activity was associated with a markedly blunted hepatic trophic response to oral BA supplementation, and with impaired repression of Cyp7a1, the gene encoding the rate-limiting enzyme in BA synthesis. CONCLUSIONS: In CF mice, the gut microbiota represses intestinal FXR activity, and, consequently, FXR-dependent hepatic cell proliferation and feedback control of BA synthesis.


Subject(s)
Cystic Fibrosis/immunology , Dysbiosis/immunology , Fibroblast Growth Factors/metabolism , Ileum/pathology , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bile Acids and Salts/biosynthesis , Bile Acids and Salts/immunology , Cell Proliferation , Cholesterol 7-alpha-Hydroxylase/metabolism , Cystic Fibrosis/complications , Cystic Fibrosis/pathology , Disease Models, Animal , Down-Regulation , Dysbiosis/microbiology , Dysbiosis/pathology , Feedback, Physiological , Female , Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Humans , Ileum/immunology , Ileum/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Liver/cytology , Liver/immunology , Liver/pathology , Male , Mice , Mice, Inbred CFTR , Up-Regulation
18.
Genomics ; 112(2): 1139-1150, 2020 03.
Article in English | MEDLINE | ID: mdl-31251978

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the gene encoding the CFTR anion channel. Loss of CFTR function in pancreatic, biliary and intestinal epithelia, severely affects gastrointestinal function. Transcriptome analysis indicated the activation of an innate and adaptive immune response in the distal small intestine of Cftr null mice. Inflammation was associated with differential regulation of numerous genes involved in the transport and metabolism of nutrients and, particularly, lipids, that are targeted by ligand-dependent nuclear receptors and/or HNF4α. Among the most strongly down-regulated genes are the FXR targets Fgf15 and Nr0b2, the PPARα target Pdk4, and the PXR target Ces2a, whereas expression of the CF modifier gene Slc6a14 was strongly increased. Most changes in gene expression were reversed by bacterial containment. Our data suggest that the gut microbiota has a pervasive effect on gene expression in CF mice, affecting enterocyte maturation, lipid metabolism, and nutrient absorption in CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Intestine, Small/metabolism , Transcriptome , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Animals , Carboxylesterase/genetics , Carboxylesterase/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Down-Regulation , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gastrointestinal Microbiome , Gene Deletion , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Immunity, Innate , Intestine, Small/immunology , Intestine, Small/microbiology , Male , Mice , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
19.
Am J Physiol Cell Physiol ; 317(4): C737-C748, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31365292

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood death from diarrhea and the leading cause of Traveler's diarrhea. E. coli heat-stable enterotoxin (ST) is a major virulence factor of ETEC and inhibits the brush border Na/H exchanger NHE3 in producing diarrhea. NHE3 regulation involves multiprotein signaling complexes that form on its COOH terminus. In this study, the hypothesis was tested that ST signals via members of the Na/H exchanger regulatory factor (NHERF) family of scaffolding proteins, NHERF2, which had been previously shown to have a role, and now with concentration on a role for NHERF3. Two models were used: mouse small intestine and Caco-2/BBe cells. In both models, ST rapidly increased intracellular cGMP, inhibited NHE3 activity, and caused a quantitatively similar decrease in apical expression of NHE3. The transport effects were NHERF3 and NHERF2 dependent. Also, mutation of the COOH-terminal amino acids of NHERF3 supported that NHERF3-NHERF2 heterodimerization was likely to account for this dual dependence. The ST increase in cGMP in both models was partially dependent on NHERF3. The intracellular signaling pathways by which ST-cGMP inhibits NHE3 were different in mouse jejunum (activation of cGMP kinase II, cGKII) and Caco-2 cells, which do not express cGKII (elevation of intracellular Ca2+ concentration [Ca2+]i). The ST elevation of [Ca2+]i was from intracellular stores and was dependent on NHERF3-NHERF2. This study shows that intracellular signaling in the same diarrheal model in multiple cell types may be different; this has implications for therapeutic strategies, which often assume that models have similar signaling mechanisms.


Subject(s)
Bacterial Toxins/pharmacology , Enterotoxins/pharmacology , Escherichia coli Proteins/pharmacology , Membrane Proteins/drug effects , Sodium-Hydrogen Exchanger 3/drug effects , Animals , Caco-2 Cells , Cyclic GMP/metabolism , Diarrhea/chemically induced , Escherichia coli/drug effects , Humans , Mice, Transgenic
20.
BMC Genomics ; 20(Suppl 8): 549, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31307398

ABSTRACT

BACKGROUND: By definition, effect of synonymous single-nucleotide variants (SNVs) on protein folding and function are neutral, as they alter the codon and not the encoded amino acid. Recent examples indicate tissue-specific and transfer RNA (tRNA)-dependent effects of some genetic variations arguing against neutrality of synonymous SNVs for protein biogenesis. RESULTS: We performed systematic analysis of tRNA abunandance across in various models used in cystic fibrosis (CF) research and drug development, including Fischer rat thyroid (FRT) cells, patient-derived primary human bronchial epithelia (HBE) from lung biopsies, primary human nasal epithelia (HNE) from nasal curettage, intestinal organoids, and airway progenitor-directed differentiation of human induced pluripotent stem cells (iPSCs). These were compared to an immortalized CF bronchial cell model (CFBE41o-) and two widely used laboratory cell lines, HeLa and HEK293. We discovered that specific synonymous SNVs exhibited differential effects which correlated with variable concentrations of cognate tRNAs. CONCLUSIONS: Our results highlight ways in which the presence of synonymous SNVs may alter local kinetics of mRNA translation; and thus, impact protein biogenesis and function. This effect is likely to influence results from mechansistic analysis and/or drug screeining efforts, and establishes importance of cereful model system selection based on genetic variation profile.


Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , RNA, Transfer/genetics , Codon/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , HEK293 Cells , HeLa Cells , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...