Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(28): 12297-12303, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38968232

ABSTRACT

The ongoing transition toward electric vehicles (EVs) is changing materials used for vehicle production, of which the consequences for the environmental performance of EVs are not well understood and managed. We demonstrate that electrification coupled with lightweighting of automobiles will lead to significant changes in the industry's demand not only for battery materials but also for other materials used throughout the entire vehicle. Given the automotive industry's substantial consumption of raw materials, changes in its material demands are expected to trigger volatilities in material prices, consequently impacting the material composition and attractiveness of EVs. In addition, the materials recovered during end-of-life recycling of EVs as the vehicle fleet turns over will impact recycled material supplies both positively and negatively, impacting material availabilities and the economic incentive to engage in recycling. These supply chain impacts will influence material usage and the associated environmental performance of not only the automotive sector but also other metal-heavy industries such as construction. In light of these challenges, we propose the need for new research to understand the dynamic materials impacts of the EV transition that encompasses its implications on EV adoption and fleet life cycle environmental performance. Effectively coordinating the coevolution of material supply chains is crucial for making the sustainable transition to EVs a reality.


Subject(s)
Automobiles , Recycling , Electricity
2.
Environ Sci Technol ; 56(16): 11798-11806, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35930734

ABSTRACT

The COVID-19 pandemic has accelerated the growth of e-commerce and automated warehouses, vehicles, and robots and has created new options for grocery supply chains. We report and compare the greenhouse gas (GHG) emissions for a 36-item grocery basket transported along 72 unique paths from a centralized warehouse to the customer, including impacts of micro-fulfillment centers, refrigeration, vehicle automation, and last-mile transportation. Our base case is in-store shopping with last-mile transportation using an internal combustion engine (ICE) SUV (6.0 kg CO2e). The results indicate that emissions reductions could be achieved by e-commerce with micro-fulfillment centers (16-54%), customer vehicle electrification (18-42%), or grocery delivery (22-65%) compared to the base case. In-store shopping with an ICE pick-up truck has the highest emissions of all paths investigated (6.9 kg CO2e) while delivery using a sidewalk automated robot has the least (1.0 kg CO2e). Shopping frequency is an important factor for households to consider, e.g. halving shopping frequency can reduce GHG emissions by 44%. Trip chaining also offers an opportunity to reduce emissions with approximately 50% savings compared to the base case. Opportunities for grocers and households to reduce grocery supply chain carbon footprints are identified and discussed.


Subject(s)
COVID-19 , Greenhouse Gases , Carbon Footprint , Greenhouse Effect , Humans , Pandemics , Transportation
3.
Nature ; 599(7883): 80-84, 2021 11.
Article in English | MEDLINE | ID: mdl-34732864

ABSTRACT

Expanded use of novel oil extraction technologies has increased the variability of petroleum resources and diversified the carbon footprint of the global oil supply1. Past life-cycle assessment (LCA) studies overlooked upstream emission heterogeneity by assuming that a decline in oil demand will displace average crude oil2. We explore the life-cycle greenhouse gas emissions impacts of marginal crude sources, identifying the upstream carbon intensity (CI) of the producers most sensitive to an oil demand decline (for example, due to a shift to alternative vehicles). We link econometric models of production profitability of 1,933 oilfields (~90% of the 2015 world supply) with their production CI. Then, we examine their response to a decline in demand under three oil market structures. According to our estimates, small demand shocks have different upstream CI implications than large shocks. Irrespective of the market structure, small shocks (-2.5% demand) displace mostly heavy crudes with ~25-54% higher CI than that of the global average. However, this imbalance diminishes as the shocks become bigger and if producers with market power coordinate their response to a demand decline. The carbon emissions benefits of reduction in oil demand are systematically dependent on the magnitude of demand drop and the global oil market structure.

4.
Environ Sci Technol ; 55(14): 10097-10107, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34213890

ABSTRACT

Modern automobiles are composed of more than 2000 different compounds comprising 76 different elements. Identifying supply risks across this palette of materials is important to ensure a smooth transition to more sustainable transportation technologies. This paper provides insight into how electrification is changing vehicle composition and how that change drives supply risk vulnerability by providing the first comprehensive, high-resolution (elemental and compound level) snapshot of material use in both conventional and hybrid electric vehicles (HEVs) using a consistent methodology. To make these contributions, we analyze part-level data of material use for seven current year models, ranging from internal combustion engine vehicles (ICEV) to plug-in hybrid vehicles (PHEVs). With this data set, we apply a novel machine learning algorithm to estimate missing or unreported composition data. We propose and apply a metric of vulnerability, referred to as exposure, which captures economic importance and susceptibility to price changes. We find that exposure increases from $874 per vehicle for ICEV passenger vehicles to $2344 per vehicle for SUV PHEVs. The shift to a PHEV fleet would double automaker exposure adding approximately $1 billion per year of supply risk to a hypothetical fleet of a million vehicles. The increase in exposure is largely not only due to the increased use of battery elements like cobalt, graphite, and nickel but also some more commonly used materials, most notably copper.


Subject(s)
Motor Vehicles , Vehicle Emissions , Automobiles , Electricity , Humans , Transportation , Vehicle Emissions/analysis
5.
Environ Sci Technol ; 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34328327

ABSTRACT

Increased E-commerce and demand for contactless delivery during the COVID-19 pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas (GHG) emissions for automated suburban ground delivery systems consisting of a vehicle (last-mile) and a robot (final-50-feet). Small and large cargo vans (125 and 350 cubic feet; V125 and V350) with an internal combustion engine (ICEV) and battery electric (BEV) powertrains were assessed for three delivery scenarios: (i) conventional, human-driven vehicle with human delivery; (ii) partially automated, human-driven vehicle with robot delivery; and (iii) fully automated, connected automated vehicle (CAV) with robot delivery. The robot's contribution to life cycle GHG emissions is small (2-6%). Compared to the conventional scenario, full automation results in similar GHG emissions for the V350-ICEV but 10% higher for the V125-BEV. Conventional delivery with a V125-BEV provides the lowest GHG emissions, 167 g CO2e/package, while partially automated delivery with a V350-ICEV generates the most at 486 g CO2e/package. Fuel economy and delivery density are key parameters, and electrification of the vehicle and carbon intensity of the electricity have a large impact. CAV power requirements and efficiency benefits largely offset each other, and automation has a moderate impact on life cycle GHG emissions.

6.
Environ Sci Technol ; 53(18): 10560-10570, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31336049

ABSTRACT

Electrification and lightweighting technologies are important components of greenhouse gas (GHG) emission reduction strategies for light-duty vehicles. Assessments of GHG emissions from light-duty vehicles should take a cradle-to-grave life cycle perspective and capture important regional effects. We report the first regionally explicit (county-level) life cycle assessment of the use of lightweighting and electrification for light-duty vehicles in the U.S. Regional differences in climate, electric grid burdens, and driving patterns compound to produce significant regional heterogeneity in the GHG benefits of electrification. We show that lightweighting further accentuates these regional differences. In fact, for the midsized cars considered in our analysis, model results suggest that aluminum lightweight vehicles with a combustion engine would have similar emissions to hybrid electric vehicles (HEVs) in about 25% of the counties in the US and lower than battery electric vehicles (BEVs) in 20% of counties. The results highlight the need for a portfolio of fuel efficient offerings to recognize the heterogeneity of regional climate, electric grid burdens, and driving patterns.


Subject(s)
Greenhouse Gases , Vehicle Emissions , Automobiles , Gasoline , Greenhouse Effect , Motor Vehicles
7.
Nat Commun ; 10(1): 1555, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30967534

ABSTRACT

Interest and investment in electric vertical takeoff and landing aircraft (VTOLs), commonly known as flying cars, have grown significantly. However, their sustainability implications are unclear. We report a physics-based analysis of primary energy and greenhouse gas (GHG) emissions of VTOLs vs. ground-based cars. Tilt-rotor/duct/wing VTOLs are efficient when cruising but consume substantial energy for takeoff and climb; hence, their burdens depend critically on trip distance. For our base case, traveling 100 km (point-to-point) with one pilot in a VTOL results in well-to-wing/wheel GHG emissions that are 35% lower but 28% higher than a one-occupant internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV), respectively. Comparing fully loaded VTOLs (three passengers) with ground-based cars with an average occupancy of 1.54, VTOL GHG emissions per passenger-kilometer are 52% lower than ICEVs and 6% lower than BEVs. VTOLs offer fast, predictable transportation and could have a niche role in sustainable mobility.

8.
Environ Sci Technol ; 53(4): 2199-2208, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30682256

ABSTRACT

Substituting conventional materials with lightweight materials is an effective way to reduce the life cycle greenhouse gas (GHG) emissions from light-duty vehicles. However, estimated GHG emission reductions of lightweighting depend on multiple factors including the vehicle powertrain technology and efficiency, lightweight material employed, and end-of-life material recovery. We developed a fleet-based life cycle model to estimate the GHG emission changes due to lightweighting the U.S. light-duty fleet from 2016 to 2050, using either high strength steel or aluminum as the lightweight material. Our model estimates that implementation of an aggressive lightweighting scenario using aluminum reduces 2016 through 2050 cumulative life cycle GHG emissions from the fleet by 2.9 Gt CO2 eq (5.6%), and annual emissions in 2050 by 11%. Lightweighting has the greatest GHG emission reduction potential when implemented in the near-term, with two times more reduction per kilometer traveled if implemented in 2016 rather than in 2030. Delaying implementation by 15 years sacrifices 72% (2.1 Gt CO2 eq) of the cumulative GHG emission mitigation potential through 2050. Lightweighting is an effective solution that could provide important near-term GHG emission reductions especially during the next 10-20 years when the fleet is dominated by conventional powertrain vehicles.


Subject(s)
Greenhouse Gases , Greenhouse Effect , Motor Vehicles , Steel , Vehicle Emissions
9.
Environ Sci Technol ; 52(5): 3249-3256, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29446302

ABSTRACT

Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.


Subject(s)
Automobile Driving , Vehicle Emissions , Electric Power Supplies , Electricity , Greenhouse Effect
10.
Environ Sci Technol ; 51(15): 8215-8228, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28714678

ABSTRACT

The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.


Subject(s)
Electric Power Supplies , Motor Vehicles , Vehicle Emissions , Costs and Cost Analysis , Electricity , Gasoline , Ownership
SELECTION OF CITATIONS
SEARCH DETAIL
...