Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Environ Sci Technol ; 58(20): 8771-8782, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728551

ABSTRACT

This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.


Subject(s)
Air Pollutants , Air Pollution , Gastrointestinal Microbiome , Humans , Male , London , Female , Middle Aged , Cross-Over Studies , Traffic-Related Pollution , Nitrogen Dioxide
3.
PLoS One ; 18(11): e0292030, 2023.
Article in English | MEDLINE | ID: mdl-38032940

ABSTRACT

The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug. However, relating the results of animal and in vitro studies to relevant clinical outcomes for the human in vivo situation still proves challenging. In this study, we incorporate principles of transfer learning within a deep artificial neural network allowing us to leverage the relative abundance of rat in vitro and in vivo exposure data from the Open TG-GATEs data set to train a model to predict the expected pattern of human in vivo gene expression following an exposure given measured human in vitro gene expression. We show that domain adaptation has been successfully achieved, with the rat and human in vitro data no longer being separable in the common latent space generated by the network. The network produces physiologically plausible predictions of human in vivo gene expression pattern following an exposure to a previously unseen compound. Moreover, we show the integration of the human in vitro data in the training of the domain adaptation network significantly improves the temporal accuracy of the predicted rat in vivo gene expression pattern following an exposure to a previously unseen compound. In this way, we demonstrate the improvements in prediction accuracy that can be achieved by combining data from distinct domains.


Subject(s)
Liver , Neural Networks, Computer , Humans , Rats , Animals , Learning , Machine Learning , Gene Expression
4.
Sci Rep ; 13(1): 18281, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880448

ABSTRACT

Diet is an important determinant of overall health, and has been linked to the risk of various cancers. To understand the mechanisms involved, transcriptomic responses from human intervention studies are very informative. However, gene expression analysis of human biopsy material only represents the average profile of a mixture of cell types that can mask more subtle, but relevant cell-specific changes. Here, we use the CIBERSORTx algorithm to generate single-cell gene expression from human multicellular colon tissue. We applied the CIBERSORTx to microarray data from the PHYTOME study, which investigated the effects of different types of meat on transcriptional and biomarker changes relevant to colorectal cancer (CRC) risk. First, we used single-cell mRNA sequencing data from healthy colon tissue to generate a novel signature matrix in CIBERSORTx, then we determined the proportions and gene expression of each separate cell type. After comparison, cell proportion analysis showed a continuous upward trend in the abundance of goblet cells and stem cells, and a continuous downward trend in transit amplifying cells after the addition of phytochemicals in red meat products. The dietary intervention influenced the expression of genes involved in the growth and division of stem cells, the metabolism and detoxification of enterocytes, the translation and glycosylation of goblet cells, and the inflammatory response of innate lymphoid cells. These results show that our approach offers novel insights into the heterogeneous gene expression responses of different cell types in colon tissue during a dietary intervention.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Colon/metabolism , Diet , Goblet Cells
5.
PLoS One ; 15(8): e0236392, 2020.
Article in English | MEDLINE | ID: mdl-32780735

ABSTRACT

In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of gene expression measured following an exposure in rodents to humans, circumventing the current reliance on orthologs, and also from in vitro to in vivo experimental designs. Of the applied deep learning architectures applied in this study the convolutional neural network (CNN) and a deep artificial neural network with bottleneck architecture significantly outperform classical machine learning techniques in predicting the time series of gene expression in primary human hepatocytes given a measured time series of gene expression from primary rat hepatocytes following exposure in vitro to a previously unseen compound across multiple toxicologically relevant gene sets. With a reduction in average mean absolute error across 76 genes that have been shown to be predictive for identifying carcinogenicity from 0.0172 for a random regression forest to 0.0166 for the CNN model (p < 0.05). These deep learning architecture also perform well when applied to predict time series of in vivo gene expression given measured time series of in vitro gene expression for rats.


Subject(s)
Deep Learning , Gene Expression Regulation/drug effects , Machine Learning , Algorithms , Animals , Clinical Trials as Topic/statistics & numerical data , Gene Expression Regulation/genetics , Hepatocytes/drug effects , Humans , Neural Networks, Computer , Rats
6.
PLoS Comput Biol ; 15(10): e1007400, 2019 10.
Article in English | MEDLINE | ID: mdl-31581241

ABSTRACT

Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model's delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction.


Subject(s)
Adipose Tissue/metabolism , Computational Biology/methods , Lipid Metabolism/physiology , Arteriovenous Anastomosis/metabolism , Blood Glucose/metabolism , Computer Simulation , Fatty Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Isotopes , Lipids/physiology , Models, Biological , Postprandial Period/physiology
7.
Arch Toxicol ; 93(11): 3067-3098, 2019 11.
Article in English | MEDLINE | ID: mdl-31586243

ABSTRACT

Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.


Subject(s)
Animal Testing Alternatives/methods , Chemical and Drug Induced Liver Injury , Liver/drug effects , Transcriptome/drug effects , Animals , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Computational Biology , Gene Expression Profiling , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , In Vitro Techniques , Lab-On-A-Chip Devices , Liver/metabolism , Liver/pathology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology
8.
Sci Rep ; 9(1): 9388, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253846

ABSTRACT

The Muscle Insulin Sensitivity Index (MISI) has been developed to estimate muscle-specific insulin sensitivity based on oral glucose tolerance test (OGTT) data. To date, the score has been implemented with considerable variation in literature and initial positive evaluations were not reproduced in subsequent studies. In this study, we investigate the computation of MISI on oral OGTT data with differing sampling schedules and aim to standardise and improve its calculation. Seven time point OGTT data for 2631 individuals from the Maastricht Study and seven time point OGTT data combined with a hyperinsulinemic-euglycaemic clamp for 71 individuals from the PRESERVE Study were used to evaluate the performance of MISI. MISI was computed on subsets of OGTT data representing four and five time point sampling schedules to determine minimal requirements for accurate computation of the score. A modified MISI computed on cubic splines of the measured data, resulting in improved identification of glucose peak and nadir, was compared with the original method yielding an increased correlation (ρ = 0.576) with the clamp measurement of peripheral insulin sensitivity as compared to the original method (ρ = 0.513). Finally, a standalone MISI calculator was developed allowing for a standardised method of calculation using both the original and improved methods.


Subject(s)
Glucose Intolerance , Glucose/metabolism , Insulin Resistance , Insulin/metabolism , Muscle, Skeletal/metabolism , Adult , Aged , Blood Glucose , Female , Glucose/administration & dosage , Glucose Tolerance Test/methods , Glucose Tolerance Test/standards , Humans , Male , Metabolic Syndrome/diagnosis , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Middle Aged , Reproducibility of Results
9.
Int J Mol Sci ; 20(9)2019 May 08.
Article in English | MEDLINE | ID: mdl-31072023

ABSTRACT

Consumption of nitrate-rich beetroot juice (BRJ) by athletes induces a number of beneficial physiological health effects, which are linked to the formation of nitric oxide (NO) from nitrate. However, following a secondary pathway, NO may also lead to the formation of N-nitroso compounds (NOCs), which are known to be carcinogenic in 39 animal species. The extent of the formation of NOCs is modulated by various other dietary factors, such as vitamin C. The present study investigates the endogenous formation of NOCs after BRJ intake and the impact of vitamin C on urinary NOC excretion. In a randomized, controlled trial, 29 healthy recreationally active volunteers ingested BRJ with or without additional vitamin C supplements for one week. A significant increase of urinary apparent total N-nitroso Compounds (ATNC) was found after one dose (5 to 47 nmol/mmol: p < 0.0001) and a further increase was found after seven consecutive doses of BRJ (104 nmol/mmol: p < 0.0001). Vitamin C supplementation inhibited ATNC increase after one dose (16 compared to 72 nmol/mmol, p < 0.01), but not after seven daily doses. This is the first study that shows that BRJ supplementation leads to an increase in formation of potentially carcinogenic NOCs. In order to protect athlete's health, it is therefore important to be cautious with chronic use of BRJ to enhance sports performances.


Subject(s)
Antioxidants/administration & dosage , Athletic Performance , Beta vulgaris/chemistry , Nitrates/administration & dosage , Adolescent , Adult , Antioxidants/chemistry , Ascorbic Acid/administration & dosage , Ascorbic Acid/urine , Dietary Supplements , Female , Fruit and Vegetable Juices , Humans , Male , Middle Aged , Nitrates/chemistry , Nitrates/urine , Nitrites/urine , Nitroso Compounds/urine , Plant Roots/chemistry , Young Adult
10.
Environ Int ; 126: 24-36, 2019 05.
Article in English | MEDLINE | ID: mdl-30776747

ABSTRACT

OBJECTIVES: To characterize the impact of PCB exposure on DNA methylation in peripheral blood leucocytes and to evaluate the corresponding changes in relation to possible health effects, with a focus on B-cell lymphoma. METHODS: We conducted an epigenome-wide association study on 611 adults free of diagnosed disease, living in Italy and Sweden, in whom we also measured plasma concentrations of 6 PCB congeners, DDE and hexachlorobenzene. RESULTS: We identified 650 CpG sites whose methylation correlates strongly (FDR < 0.01) with plasma concentrations of at least one PCB congener. Stronger effects were observed in males and in Sweden. This epigenetic exposure profile shows extensive and highly statistically significant overlaps with published profiles associated with the risk of future B-cell chronic lymphocytic leukemia (CLL) as well as with clinical CLL (38 and 28 CpG sites, respectively). For all these sites, the methylation changes were in the same direction for increasing exposure and for higher disease risk or clinical disease status, suggesting an etiological link between exposure and CLL. Mediation analysis reinforced the suggestion of a causal link between exposure, changes in DNA methylation and disease. Disease connectivity analysis identified multiple additional diseases associated with differentially methylated genes, including melanoma for which an etiological link with PCB exposure is established, as well as developmental and neurological diseases for which there is corresponding epidemiological evidence. Differentially methylated genes include many homeobox genes, suggesting that PCBs target stem cells. Furthermore, numerous polycomb protein target genes were hypermethylated with increasing exposure, an effect known to constitute an early marker of carcinogenesis. CONCLUSIONS: This study provides mechanistic evidence in support of a link between exposure to PCBs and the etiology of CLL and underlines the utility of omic profiling in the evaluation of the potential toxicity of environmental chemicals.


Subject(s)
DNA Methylation , Leukemia, Lymphocytic, Chronic, B-Cell/chemically induced , Polychlorinated Biphenyls/toxicity , Adult , Female , Humans , Italy , Male , Middle Aged , Sweden
11.
Sci Rep ; 9(1): 746, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679748

ABSTRACT

PCBs are classified as xenoestrogens and carcinogens and their health risks may be sex-specific. To identify potential sex-specific responses to PCB-exposure we established gene expression profiles in a population study subdivided into females and males. Gene expression profiles were determined in a study population consisting of 512 subjects from the EnviroGenomarkers project, 217 subjects who developed lymphoma and 295 controls were selected in later life. We ran linear mixed models in order to find associations between gene expression and exposure to PCBs, while correcting for confounders, in particular distribution of white blood cells (WBC), as well as random effects. The analysis was subdivided according to sex and development of lymphoma in later life. The changes in gene expression as a result of exposure to the six studied PCB congeners were sex- and WBC type specific. The relatively large number of genes that are significantly associated with PCB-exposure in the female subpopulation already indicates different biological response mechanisms to PCBs between the two sexes. The interaction analysis between different PCBs and WBCs provides only a small overlap between sexes. In males, cancer-related pathways and in females immune system-related pathways are identified in association with PCBs and WBCs. Future lymphoma cases and controls for both sexes show different responses to the interaction of PCBs with WBCs, suggesting a role of the immune system in PCB-related cancer development.


Subject(s)
Carcinogens/toxicity , Environmental Pollutants/toxicity , Neoplasms/genetics , Polychlorinated Biphenyls/toxicity , Transcriptome/drug effects , Environmental Monitoring , Female , Humans , Immune System/drug effects , Immune System/pathology , Leukocytes/drug effects , Male , Middle Aged , Neoplasms/chemically induced , Sex Characteristics , Transcriptome/genetics , Xenobiotics/toxicity
12.
PLoS One ; 13(8): e0202947, 2018.
Article in English | MEDLINE | ID: mdl-30161168

ABSTRACT

Batch effects are technical sources of variation introduced by the necessity of conducting gene expression analyses on different dates due to the large number of biological samples in population-based studies. The aim of this study is to evaluate the performances of linear mixed models (LMM) and Combat in batch effect removal. We also assessed the utility of adding quality control samples in the study design as technical replicates. In order to do so, we simulated gene expression data by adding "treatment" and batch effects to a real gene expression dataset. The performances of LMM and Combat, with and without quality control samples, are assessed in terms of sensitivity and specificity while correcting for the batch effect using a wide range of effect sizes, statistical noise, sample sizes and level of balanced/unbalanced designs. The simulations showed small differences among LMM and Combat. LMM identifies stronger relationships between big effect sizes and gene expression than Combat, while Combat identifies in general more true and false positives than LMM. However, these small differences can still be relevant depending on the research goal. When any of these methods are applied, quality control samples did not reduce the batch effect, showing no added value for including them in the study design.


Subject(s)
Data Interpretation, Statistical , Gene Expression Profiling/methods , Quality Control , Computer Simulation , Female , Humans , Male , Middle Aged , Models, Biological , Transcriptome
13.
Environ Pollut ; 242(Pt A): 182-190, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29980036

ABSTRACT

Diesel vehicle emissions are the major source of genotoxic compounds in ambient air from urban areas. These pollutants are linked to risks of cardiovascular diseases, lung cancer, respiratory infections and adverse neurological effects. Biological events associated with exposure to some air pollutants are widely unknown but applying omics techniques may help to identify the molecular processes that link exposure to disease risk. Most data on health risks are related to long-term exposure, so the aim of this study is to investigate the impact of short-term exposure (two hours) to air pollutants on the blood transcriptome and microRNA expression levels. We analyzed transcriptomics and microRNA expression using microarray technology on blood samples from volunteers participating in studies in London, the Oxford Street cohort, and, in Barcelona, the TAPAS cohort. Personal exposure levels measurements of particulate matter (PM10, PM2.5), ultrafine particles (UFPC), nitrogen oxides (NO2, NO and NOx), black carbon (BC) and carbon oxides (CO and CO2) were registered for each volunteer. Associations between air pollutant levels and gene/microRNA expression were evaluated using multivariate normal models (MVN). MVN-models identified compound-specific expression of blood cell genes and microRNAs associated with air pollution despite the low exposure levels, the short exposure periods and the relatively small-sized cohorts. Hsa-miR-197-3p, hsa-miR-29a-3p, hsa-miR-15a-5p, hsa-miR-16-5p and hsa-miR-92a-3p are found significantly expressed in association with exposures. These microRNAs target also relevant transcripts, indicating their potential relevance in the research of omics-biomarkers responding to air pollution. Furthermore, these microRNAs are also known to be associated with diseases previously linked to air pollution exposure including several cancers such lung cancer and Alzheimer's disease. In conclusion, we identified in this study promising compound-specific mRNA and microRNA biomarkers after two hours of exposure to low levels of air pollutants during two hours that suggest increased cancer risks.


Subject(s)
Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Air Pollution/analysis , Biomarkers , Cardiovascular Diseases/epidemiology , Cohort Studies , Environmental Exposure/analysis , Female , Humans , London , Lung Neoplasms/epidemiology , Male , MicroRNAs , Nitrogen Oxides , Particulate Matter/analysis , Research Design , Respiratory Tract Infections/epidemiology , Transcriptome , Vehicle Emissions/analysis
14.
Int J Obes (Lond) ; 42(12): 2022-2035, 2018 12.
Article in English | MEDLINE | ID: mdl-29713043

ABSTRACT

BACKGROUND: Obesity is an established risk factor for several common chronic diseases such as breast and colorectal cancer, metabolic and cardiovascular diseases; however, the biological basis for these relationships is not fully understood. To explore the association of obesity with these conditions, we investigated peripheral blood leucocyte (PBL) DNA methylation markers for adiposity and their contribution to risk of incident breast and colorectal cancer and myocardial infarction. METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population. RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P < 1.6×10-3) and one intergenic locus on chromosome 1 was inversely associated with myocardial infarction (P < 1.25×10-3), independently of obesity and established risk factors. CONCLUSION: Our results suggest that epigenetic changes, in particular altered DNA methylation patterns, may be an intermediate biomarker at the intersection of obesity and obesity-related diseases, and could offer clues as to underlying biological mechanisms.


Subject(s)
Adiposity/genetics , DNA Methylation/genetics , Epigenomics/methods , Myocardial Infarction , Neoplasms , Obesity , Genetic Markers/genetics , Genome-Wide Association Study , Humans , Leukocytes, Mononuclear/chemistry , Myocardial Infarction/epidemiology , Myocardial Infarction/genetics , Neoplasms/epidemiology , Neoplasms/genetics , Obesity/epidemiology , Obesity/genetics
15.
Int J Cancer ; 143(6): 1335-1347, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29667176

ABSTRACT

Recent prospective studies have shown that dysregulation of the immune system may precede the development of B-cell lymphomas (BCL) in immunocompetent individuals. However, to date, the studies were restricted to a few immune markers, which were considered separately. Using a nested case-control study within two European prospective cohorts, we measured plasma levels of 28 immune markers in samples collected a median of 6 years before diagnosis (range 2.01-15.97) in 268 incident cases of BCL (including multiple myeloma [MM]) and matched controls. Linear mixed models and partial least square analyses were used to analyze the association between levels of immune marker and the incidence of BCL and its main histological subtypes and to investigate potential biomarkers predictive of the time to diagnosis. Linear mixed model analyses identified associations linking lower levels of fibroblast growth factor-2 (FGF-2 p = 7.2 × 10-4 ) and transforming growth factor alpha (TGF-α, p = 6.5 × 10-5 ) and BCL incidence. Analyses stratified by histological subtypes identified inverse associations for MM subtype including FGF-2 (p = 7.8 × 10-7 ), TGF-α (p = 4.08 × 10-5 ), fractalkine (p = 1.12 × 10-3 ), monocyte chemotactic protein-3 (p = 1.36 × 10-4 ), macrophage inflammatory protein 1-alpha (p = 4.6 × 10-4 ) and vascular endothelial growth factor (p = 4.23 × 10-5 ). Our results also provided marginal support for already reported associations between chemokines and diffuse large BCL (DLBCL) and cytokines and chronic lymphocytic leukemia (CLL). Case-only analyses showed that Granulocyte-macrophage colony stimulating factor levels were consistently higher closer to diagnosis, which provides further evidence of its role in tumor progression. In conclusion, our study suggests a role of growth-factors in the incidence of MM and of chemokine and cytokine regulation in DLBCL and CLL.


Subject(s)
Biomarkers/blood , Lymphoma, Large B-Cell, Diffuse/blood , Multiple Myeloma/blood , Adult , Aged , Case-Control Studies , Chemokine CCL7/blood , Chemokine CX3CL1/blood , Europe , Female , Fibroblast Growth Factor 2/blood , Follow-Up Studies , Humans , Incidence , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/epidemiology , Lymphoma, Large B-Cell, Diffuse/immunology , Male , Middle Aged , Multiple Myeloma/diagnosis , Multiple Myeloma/epidemiology , Multiple Myeloma/immunology , Multivariate Analysis , Prognosis , Prospective Studies , Transforming Growth Factor alpha/blood , Vascular Endothelial Growth Factor A/blood
16.
Nutrients ; 11(1)2018 Dec 29.
Article in English | MEDLINE | ID: mdl-30597948

ABSTRACT

Blueberries contain many different phytochemicals which might be responsible for their disease preventive properties. In a previously conducted human dietary intervention study, we showed that a 4-week intervention with blueberry⁻apple juice protected the participants against oxidative stress and modulated expression of genes involved in different genetic pathways contributing to the antioxidant response. The present study investigates the effect of different blueberry varieties (Elliot, Draper, Bluecrop, and Aurora, and the blueberry⁻apple juice from our previous human dietary intervention study), and four different single compounds (vitamin C, peonidin, cyanidin, and quercetin) on antioxidant capacity and gene expression changes in colonic cells in vitro, and compares the outcome with the earlier in vivo findings. The results demonstrate that all blueberry varieties as well as the blueberry⁻apple juice were more effective in reducing oxidative stress as compared to the single compounds (e.g., DNA strand break reduction: EC50: Elliot 8.3 mg/mL, Aurora and Draper 11.9 mg/mL, blueberry⁻apple juice 12.3 mg/mL, and Bluecrop 12.7 mg/mL; single compounds). In addition, the gene expression profiles (consisting of 18 selected genes from the in vivo study) induced by the blueberry varieties were more similar to the profile of the human intervention study (range 44⁻78%). The blueberry variety Elliot showed the strongest and most similar effects, almost 80% of gene expression modulations were similar compared to the in vivo results. From the single compounds (range 17⁻44%), quercetin induced the most comparable gene expression changes, i.e., 44%. This approach could be useful in agriculture for identifying crop varieties containing combinations of phytochemicals which show optimal preventive capacities.


Subject(s)
Blueberry Plants/chemistry , Phytochemicals/chemistry , Caco-2 Cells , DNA Damage/drug effects , Gene Expression Regulation/drug effects , Humans
17.
Mol Nutr Food Res ; 62(1)2018 01.
Article in English | MEDLINE | ID: mdl-29108107

ABSTRACT

There is ample scientific evidence suggesting that the health benefits of eating the right amounts of a variety of vegetables and fruit are the consequence of the combined action of different phytochemicals. The present review provides an update of the scientific literature on additive and synergistic effects of mixtures of phytochemicals. Most research has been carried out in in vitro systems in which synergistic or additive effects have been established on the level of cell proliferation, apoptosis, antioxidant capacity, and tumor incidence, accompanied by changes in gene and protein expression in relevant pathways underlying molecular mechanisms of disease prevention. The number of human dietary intervention studies investigating complex mixtures of phytochemicals is relatively small, but showing promising results. These studies have demonstrated that combining transcriptomic data with phenotypic markers provide insight into the relevant cellular processes which contribute to the antioxidant response of complex mixtures of phytochemicals. Future studies should be designed as short-term studies testing different combinations of vegetables and fruit, in which markers for disease outcome as well as molecular ('omics)-markers and genetic variability between subjects are included. This will create new opportunities for food innovation and the development of more personalized strategies for prevention of chronic diseases.


Subject(s)
Chronic Disease/prevention & control , Fruit , Phytochemicals/administration & dosage , Precision Medicine , Vegetables , Animals , Fruit/chemistry , Humans , Phytochemicals/analysis , Vegetables/chemistry
18.
Toxicology ; 393: 160-170, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29154799

ABSTRACT

Valproic acid (VPA) is a very potent anti-cancer and neuro-protective drug probably by its HDAC inhibiting properties, which may cause steatosis in the liver. The present study investigates the effect of repetitive VPA treatment of primary human hepatocytes (PHH) on whole genome gene expression-, DNA methylation-, and miRNA changes, using microarrays and integrated data analyses. PHH were exposed to a non-cytotoxic dose of VPA for 5days daily which induced lipid accumulation. Part of the PHH was left untreated for 3days for studying the persistence of 'omics' changes. VPA treatment appeared to inhibit the expression of the transcription factors HNF1A and ONECUT1. HNF1A interacted with 41 differentially expressed genes of which 12 were also differentially methylated. None of the genes present in this network were regulated by a DE-miR. The subnetwork of ONECUT1 consisted of 44 differentially expressed genes of which 15 were differentially methylated, and 3 were regulated by a DE-miR. A number of genes in the networks are involved in fatty acid metabolism, and may contribute to the development of steatosis by increasing oxidative stress thereby causing mitochondrial dysfunction, and by shifting metabolism of VPA towards ß-oxidation due to reduced glucuronidation. Part of the changes remained persistent after washing out of VPA, like PMAIP1 which is associated with cellular stress in liver of patients with NASH. The MMP2 gene showed the highest number of interactions with other persistently expressed genes, among which LCN2 which is a key modulator of lipid homeostasis. Furthermore, VPA modulated the expression and DNA methylation level of nuclear receptors and their target genes involved in the adverse outcome pathway of steatosis, thereby expanding our current knowledge of the pathway. In particular, VPA modulated PPARγ, and PPARα, AHR and CD36 on both the gene expression and the DNA methylation level, thereby inhibiting ß-oxidation and increasing uptake of fatty acid into the hepatocytes, respectively. Overall, our integrative data analyses identified novel genes modulated by VPA, which provide more insight into the mechanisms of repeated dose toxicity of VPA, leading to steatosis.


Subject(s)
Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Valproic Acid/toxicity , Adult , Cells, Cultured , DNA Methylation , Fatty Liver/genetics , Female , Gene Expression Profiling , Hepatocytes/metabolism , Humans , Infant , Male , MicroRNAs/genetics , Middle Aged
19.
BMC Genomics ; 18(1): 728, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28903739

ABSTRACT

BACKGROUND: B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into the pathogenesis of the disease of potential clinical relevance. RESULTS: We employed peripheral blood buffy coats of 347 apparently healthy subjects, of whom 28 were diagnosed with CLL 2.0-15.7 years after enrollment, to derive for the first time genome-wide DNA methylation, as well as gene and miRNA expression, profiles associated with the risk of future disease. After adjustment for white blood cell composition, we identified 722 differentially methylated CpG sites and 15 differentially expressed genes (Bonferroni-corrected p < 0.05) as well as 2 miRNAs (FDR < 0.05) which were associated with the risk of future CLL. The majority of these signals have also been observed in clinical CLL, suggesting the presence in prediagnostic blood of CLL-like cells. Future CLL cases who, at enrollment, had a relatively low B-cell fraction (<10%), and were therefore less likely to have been suffering from undiagnosed CLL or a precursor condition, showed profiles involving smaller numbers of the same differential signals with intensities, after adjusting for B-cell content, generally smaller than those observed in the full set of cases. A similar picture was obtained when the differential profiles of cases with time-to-diagnosis above the overall median period of 7.4 years were compared with those with shorted time-to-disease. Differentially methylated genes of major functional significance include numerous genes that encode for transcription factors, especially members of the homeobox family, while differentially expressed genes include, among others, multiple genes related to WNT signaling as well as the miRNAs miR-150-5p and miR-155-5p. CONCLUSIONS: Our findings demonstrate the presence in prediagnostic blood of future CLL patients, more than 10 years before diagnosis, of CLL-like cells which evolve as preclinical disease progresses, and point to early molecular alterations with a pathogenetic potential.


Subject(s)
Biomarkers, Tumor , Gene Expression Profiling , Leukemia, Lymphocytic, Chronic, B-Cell , Biomarkers, Tumor/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Prognosis , Time Factors , Humans
20.
Chem Res Toxicol ; 30(10): 1847-1854, 2017 10 16.
Article in English | MEDLINE | ID: mdl-28853863

ABSTRACT

Valproic acid (VPA) is one of the most widely prescribed antiepileptic drugs in the world. Despite its pharmacological importance, it may cause liver toxicity and steatosis through mitochondrial dysfunction. The aim of this study is to further investigate VPA-induced mechanisms of steatosis by analyzing changes in patterns of methylation in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, primary human hepatocytes (PHHs) were exposed to an incubation concentration of VPA that was shown to cause steatosis without inducing overt cytotoxicity. VPA was administered daily for 5 days, and this was followed by a 3 day washout (WO). Methylated DNA regions (DMRs) were identified by using the methylated DNA immunoprecipitation-sequencing (MeDIP-seq) method. The nDNA DMRs after VPA treatment could indeed be classified into oxidative stress- and steatosis-related pathways. In particular, networks of the steatosis-related gene EP300 provided novel insight into the mechanisms of toxicity induced by VPA treatment. Furthermore, we suggest that VPA induces a crosstalk between nDNA hypermethylation and mtDNA hypomethylation that plays a role in oxidative stress and steatosis development. Although most VPA-induced methylation patterns appeared reversible upon terminating VPA treatment, 31 nDNA DMRs (including 5 zinc finger protein genes) remained persistent after the WO period. Overall, we have shown that MeDIP-seq analysis is highly informative in disclosing novel mechanisms of VPA-induced toxicity in PHHs. Our results thus provide a prototype for the novel generation of interesting methylation biomarkers for repeated dose liver toxicity in vitro.


Subject(s)
Cell Nucleolus/drug effects , DNA Methylation/drug effects , DNA, Mitochondrial/drug effects , Hepatocytes/drug effects , Valproic Acid/pharmacology , Cell Nucleolus/metabolism , DNA, Mitochondrial/metabolism , Hepatocytes/metabolism , Humans , Structure-Activity Relationship , Tumor Cells, Cultured , Valproic Acid/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...