Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(6): e1012277, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885263

ABSTRACT

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.

2.
Curr Opin Plant Biol ; 76: 102482, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924562

ABSTRACT

Exocytosis is a conserved trafficking pathway that transports secretory vesicles to the extracellular space, replenishes the plasma membrane and is essential for establishing cell polarity. Its spatiotemporal regulation is mediated by an evolutionary conserved octameric tethering complex, the exocyst. In plants, certain subunits of this complex have diversified and acquired multiple functions, including a central role in defense against pathogens and pests. Here, I review the latest evidence suggesting the dramatic expansion and functional diversification of the exocyst subunit Exo70 is likely driven by a coevolutionary arms race, in which Exo70 proteins are repeatedly targeted by effectors from multiple pathogens and, in turn, are monitored by plant immune receptors for pathogen perception.


Subject(s)
Exocytosis , Plants , Exocytosis/physiology , Cell Membrane/metabolism , Biological Transport , Secretory Vesicles/metabolism
3.
Plant Cell ; 35(10): 3809-3827, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37486356

ABSTRACT

Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signaling networks that coevolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. The sensor and helper NLRs of the rice (Oryza sativa) NLR pair Pik have coevolved, and mismatching between noncoevolved alleles triggers constitutive activation and cell death. This limits the extent to which protein modifications can be used to engineer pathogen recognition and enhance disease resistance mediated by these NLRs. Here, we dissected incompatibility determinants in the Pik pair in Nicotiana benthamiana and found that heavy metal-associated (HMA) domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely coevolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities, overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic domains with novel and enhanced recognition specificities. Taken together, our results reveal a strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.


Subject(s)
Disease Resistance , Plant Proteins , Disease Resistance/genetics , Plant Proteins/metabolism , Alleles , Plants/genetics , Plant Immunity/genetics , Plant Diseases/genetics
4.
Elife ; 122023 05 18.
Article in English | MEDLINE | ID: mdl-37199729

ABSTRACT

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.


Subject(s)
Magnaporthe , Oryza , Disease Resistance/genetics , Receptors, Immunologic/metabolism , Plants/metabolism , Plant Diseases/microbiology , Magnaporthe/metabolism , Plant Proteins/chemistry , Host-Pathogen Interactions
5.
Curr Opin Plant Biol ; 74: 102380, 2023 08.
Article in English | MEDLINE | ID: mdl-37187111

ABSTRACT

Factors including climate change and increased global exchange are set to escalate the prevalence of plant diseases, posing an unprecedented threat to global food security and making it more challenging to meet the demands of an ever-growing population. As such, new methods of pathogen control are essential to help with the growing danger of crop losses to plant diseases. The intracellular immune system of plants utilizes nucleotide-binding leucine-rich repeat (NLR) receptors to recognize and activate defense responses to pathogen virulence proteins (effectors) delivered to the host. Engineering the recognition properties of plant NLRs toward pathogen effectors is a genetic solution to plant diseases with high specificity, and it is more sustainable than several current methods for pathogen control that frequently rely on agrochemicals. Here, we highlight the pioneering approaches toward enhancing effector recognition in plant NLRs and discuss the barriers and solutions in engineering the plant intracellular immune system.


Subject(s)
NLR Proteins , Plants , NLR Proteins/genetics , Plants/metabolism , Plant Immunity/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
6.
J Cell Biol ; 221(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36260289

ABSTRACT

Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, autophagosome maturation, i.e., delivery and fusion with the vacuole, remains largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1's function is evolutionarily conserved in plants, as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by bridging autophagosomes with the multivesicular body-localized ESCRT-I component VPS23A, leading to the formation of amphisomes. Similar to CFS1-ATG8 interaction, disrupting the CFS1-VPS23A interaction blocks autophagic flux and renders plants sensitive to nitrogen starvation. Altogether, our results reveal a conserved vacuolar sorting hub that regulates autophagic flux in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagosomes , Vacuoles , Arabidopsis/genetics , Endosomal Sorting Complexes Required for Transport , Nitrogen/metabolism , Vacuoles/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252011

ABSTRACT

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Subject(s)
Magnaporthe , Oryza , Disease Resistance , Fungal Proteins/metabolism , Host-Pathogen Interactions , Magnaporthe/genetics , Oryza/metabolism , Plant Diseases/microbiology , Plant Proteins/chemistry , Plants/metabolism , Zinc/metabolism
8.
Elife ; 102021 11 16.
Article in English | MEDLINE | ID: mdl-34783652

ABSTRACT

Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus Magnaporthe oryzae harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.


Subject(s)
Ascomycota/physiology , NLR Proteins/genetics , Oryza/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Receptors, Immunologic , Alleles , Host-Pathogen Interactions/immunology , NLR Proteins/immunology , Oryza/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/immunology , Receptors, Immunologic/metabolism
9.
PLoS Pathog ; 17(3): e1009368, 2021 03.
Article in English | MEDLINE | ID: mdl-33647072

ABSTRACT

Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.


Subject(s)
Ascomycota/metabolism , Host-Pathogen Interactions/physiology , Plant Diseases/microbiology , Receptors, Immunologic/metabolism , Alleles , Host-Pathogen Interactions/immunology , Magnaporthe/metabolism , NLR Proteins/metabolism , Oryza , Plant Proteins/metabolism , Polymorphism, Genetic/genetics
10.
J Biol Chem ; 295(44): 14916-14935, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32816993

ABSTRACT

Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.


Subject(s)
Plants/immunology , Receptors, Immunologic/metabolism , NLR Proteins/metabolism , Plant Diseases/immunology , Plants/metabolism , Signal Transduction
11.
Bio Protoc ; 10(13): e3676, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-33659346

ABSTRACT

The mechanisms of virulence and immunity are often governed by molecular interactions between pathogens and host proteins. The study of these interactions has major implications on understanding virulence activities, and how the host immune system recognizes the presence of pathogens to initiate an immune response. Frequently, the association between pathogen molecules and host proteins are assessed using qualitative techniques. As small differences in binding affinity can have a major biological effect, in vitro techniques that can quantitatively compare the binding between different proteins are required. However, these techniques can be manually intensive and often require large amounts of purified proteins. Here we present a simplified Surface Plasmon Resonance (SPR) protocol that allows a reproducible side-by-side quantitative comparison of the binding between different proteins, even in cases where the binding affinity cannot be confidently calculated. We used this method to assess the binding of virulence proteins (termed effectors) from the blast fungus Magnaporthe oryzae, to a domain of a host immune receptor. This approach represents a rapid and quantitative way to study how pathogen molecules bind to host proteins, requires only limited quantities of proteins, and is highly reproducible. Although this method requires the use of an SPR instrument, these can often be accessed through shared scientific services at many institutions. Thus, this technique can be implemented in any study that aims to understand host-pathogen interactions, irrespective of the expertise of the investigator.

13.
Elife ; 82019 09 19.
Article in English | MEDLINE | ID: mdl-31535976

ABSTRACT

Plant nucleotide binding, leucine-rich repeat (NLR) receptors detect pathogen effectors and initiate an immune response. Since their discovery, NLRs have been the focus of protein engineering to improve disease resistance. However, this approach has proven challenging, in part due to their narrow response specificity. Previously, we revealed the structural basis of pathogen recognition by the integrated heavy metal associated (HMA) domain of the rice NLR Pikp (Maqbool et al., 2015). Here, we used structure-guided engineering to expand the response profile of Pikp to variants of the rice blast pathogen effector AVR-Pik. A mutation located within an effector-binding interface of the integrated Pikp-HMA domain increased the binding affinity for AVR-Pik variants in vitro and in vivo. This translates to an expanded cell-death response to AVR-Pik variants previously unrecognized by Pikp in planta. The structures of the engineered Pikp-HMA in complex with AVR-Pik variants revealed the mechanism of expanded recognition. These results provide a proof-of-concept that protein engineering can improve the utility of plant NLR receptors where direct interaction between effectors and NLRs is established, particularly where this interaction occurs via integrated domains.


Subject(s)
NLR Proteins/metabolism , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Antigens, Bacterial/metabolism , NLR Proteins/genetics , Oryza/enzymology , Plant Proteins/genetics , Protein Binding , Protein Engineering , Receptors, Immunologic/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
14.
PLoS Biol ; 17(7): e3000373, 2019 07.
Article in English | MEDLINE | ID: mdl-31329577

ABSTRACT

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy , Plant Proteins/metabolism , Plants/metabolism , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/genetics , Immunoprecipitation/methods , Mass Spectrometry/methods , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/classification , Plants/genetics , Plants, Genetically Modified , Protein Binding , Protein Conformation, beta-Strand , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteomics/methods , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Nicotiana/genetics , Nicotiana/metabolism
15.
Plant Cell Physiol ; 59(12): 2398-2408, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30192967

ABSTRACT

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular pathogen receptors whose N-terminal domains are integral to signal transduction after perception of a pathogen-derived effector protein. The two major plant NLR classes are defined by the presence of either a Toll/interleukin-1 receptor (TIR) or a coiled-coil (CC) domain at their N-terminus (TNLs and CNLs). Our knowledge of how CC domains function in plant CNLs lags behind that of how TIR domains function in plant TNLs. CNLs are the most abundant class of NLRs in monocotyledonous plants, and further research is required to understand the molecular mechanisms of how these domains contribute to disease resistance in cereal crops. Previous studies of CC domains have revealed functional diversity, making categorization difficult, which in turn makes experimental design for assaying function challenging. In this review, we summarize the current understanding of CC domain function in plant CNLs, highlighting the differences in modes of action and structure. To aid experimental design in exploring CC domain function, we present a 'best-practice' guide to designing constructs through use of sequence and secondary structure comparisons and discuss the relevant assays for investigating CC domain function. Finally, we discuss whether using homology modeling is useful to describe putative CC domain function in CNLs through parallels with the functions of previously characterized helical adaptor proteins.


Subject(s)
NLR Proteins/chemistry , NLR Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/metabolism , Protein Domains , Protein Structure, Secondary , Structure-Activity Relationship
16.
Nat Plants ; 4(9): 734, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30127412

ABSTRACT

In the version of this Article originally published, in Fig. 1b the single-letter code for the amino acid polymorphism at position 46 in the schematic of the AVR-PikE variant was incorrectly given as 'H'. The correct amino acid is 'N'. This has now been amended in all versions of the Article.

17.
Nat Plants ; 4(8): 576-585, 2018 08.
Article in English | MEDLINE | ID: mdl-29988155

ABSTRACT

Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture.


Subject(s)
Immunity, Innate , Magnaporthe/immunology , NLR Proteins/physiology , Oryza/immunology , Plant Proteins/physiology , Polymorphism, Genetic , Fungal Proteins/immunology , Fungal Proteins/metabolism , Host-Pathogen Interactions/immunology , Magnaporthe/metabolism , Magnaporthe/pathogenicity , Models, Immunological , Models, Molecular , NLR Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Mol Plant Microbe Interact ; 31(1): 34-45, 2018 01.
Article in English | MEDLINE | ID: mdl-29144205

ABSTRACT

A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


Subject(s)
Host-Pathogen Interactions , NLR Proteins/metabolism , Plants/metabolism , Plants/microbiology , Amino Acid Sequence , Biological Evolution , Genetic Variation , NLR Proteins/chemistry , NLR Proteins/genetics , Plants/immunology , Selection, Genetic
19.
Curr Opin Plant Biol ; 38: 25-33, 2017 08.
Article in English | MEDLINE | ID: mdl-28460241

ABSTRACT

Plant pathogens are a serious threat to agriculture and to global food security, causing diverse crop diseases which lead to extensive annual yield losses. Production of effector proteins by pathogens, to manipulate host cellular processes, is central to their success. An understanding of fundamental effector biology is key to addressing the threat posed by these pathogens. Recent advances in 'omics' technologies have facilitated high-throughput identification of putative effector proteins, while evolving cellular, structural and biochemical approaches have assisted in characterising their function. Furthermore, structures of effectors in complex with host factors now provide opportunities for applying our knowledge of effector biology to influence disease outcomes. In this review, we highlight recent advances in the field and suggest avenues for future research.


Subject(s)
Plant Diseases/microbiology , Plant Proteins/metabolism , Agriculture , Host-Pathogen Interactions , Plant Proteins/genetics
20.
Trends Plant Sci ; 22(3): 204-214, 2017 03.
Article in English | MEDLINE | ID: mdl-28038982

ABSTRACT

Selective autophagy is a conserved homeostatic pathway that involves engulfment of specific cargo molecules into specialized organelles called autophagosomes. The ubiquitin-like protein ATG8 is a central player of the autophagy network that decorates autophagosomes and binds to numerous cargo receptors. Although highly conserved across eukaryotes, ATG8 diversified from a single protein in algae to multiple isoforms in higher plants. We present a phylogenetic overview of 376 ATG8 proteins across the green plant lineage that revealed family-specific ATG8 clades. Because these clades differ in fixed amino acid polymorphisms, they provide a mechanistic framework to test whether distinct ATG8 clades are functionally specialized. We propose that ATG8 expansion may have contributed to the diversification of selective autophagy pathways in plants.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy/physiology , Plant Proteins/metabolism , Autophagosomes/metabolism , Autophagy/genetics , Autophagy-Related Protein 8 Family/genetics , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...