Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transgenic Res ; 26(4): 501-514, 2017 08.
Article in English | MEDLINE | ID: mdl-28466411

ABSTRACT

Eastern gamagrass (Tripsacum dactyloides L.) belongs to the same tribe of the Poaceae family as maize (Zea mays L.) and grows naturally in the same region where maize is commercially produced in the USA. Although no evidence exists of gene flow from maize to eastern gamagrass in nature, experimental crosses between the two species were produced using specific techniques. As part of environmental risk assessment, the possibility of transgene flow from maize to eastern gamagrass populations in nature was evaluated with the objectives: (1) to assess the seeds of eastern gamagrass populations naturally growing near commercial maize fields for the presence of a transgenic glyphosate-tolerance gene (cp4 epsps) that would indicate cross-pollination between the two species, and (2) to evaluate the possibility of interspecific hybridization between transgenic maize used as male parent and eastern gamagrass used as female parent. A total of 46,643 seeds from 54 eastern gamagrass populations collected in proximity of maize fields in Illinois, USA were planted in a field in 2014 and 2015. Emerged seedlings were treated with glyphosate herbicide and assessed for survival. An additional 48,000 seeds from the same 54 eastern gamagrass populations were tested for the presence of the cp4 epsps transgene markers using TaqMan® PCR method. The results from these trials showed that no seedlings survived the herbicide treatment and no seed indicated presence of the herbicide tolerant cp4 epsps transgene, even though these eastern gamagrass populations were exposed to glyphosate-tolerant maize pollen for years. Furthermore, no interspecific hybrid seeds were produced from 135 hand-pollination attempts involving 1529 eastern gamagrass spikelets exposed to maize pollen. Together, these results indicate that there is no evidence of gene flow from maize to eastern gamagrass in natural habitats. The outcome of this study should be taken in consideration when assessing for environmental risks regarding the consequence of gene flow from transgenic maize to its wild relatives.


Subject(s)
Hybridization, Genetic , Plants, Genetically Modified/genetics , Poaceae/genetics , Zea mays/genetics , Animals , Gene Flow/genetics , Plants, Genetically Modified/growth & development , Poaceae/growth & development , Pollination/genetics , Seeds/genetics , Seeds/growth & development , Zea mays/growth & development
2.
Transgenic Res ; 21(3): 655-64, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22002083

ABSTRACT

One source of potential harm from the cultivation of transgenic crops is their dispersal, persistence and spread in non-agricultural land. Ecological damage may result from such spread if the abundance of valued species is reduced. The ability of a plant to spread in non-agricultural habitats is called its invasiveness potential. The risks posed by the invasiveness potential of transgenic crops are assessed by comparing in agronomic field trials the phenotypes of the crops with the phenotypes of genetically similar non-transgenic crops known to have low invasiveness potential. If the transgenic and non-transgenic crops are similar in traits believed to control invasiveness potential, it may be concluded that the transgenic crop has low invasiveness potential and poses negligible ecological risk via persistence and spread in non-agricultural habitats. If the phenotype of the transgenic crop is outside the range of the non-transgenic comparators for the traits controlling invasiveness potential, or if the comparative approach is regarded as inadequate for reasons of risk perception or risk communication, experiments that simulate the dispersal of the crop into non-agricultural habitats may be necessary. We describe such an experiment for several commercial insect-resistant transgenic maize events in conditions similar to those found in maize-growing regions of Mexico. As expected from comparative risk assessments, the transgenic maize was found to behave similarly to non-transgenic maize and to be non-invasive. The value of this experiment in assessing and communicating the negligible ecological risk posed by the low invasiveness potential of insect-resistant transgenic maize in Mexico is discussed.


Subject(s)
Ecology , Plants, Genetically Modified/physiology , Risk Assessment/methods , Zea mays/physiology , Animals , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Ecosystem , Environment , Insecta/pathogenicity , Introduced Species , Mexico , Phenotype , Plant Diseases/parasitology , Plants, Genetically Modified/growth & development , Reproduction , Seed Dispersal , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...