Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041156

ABSTRACT

Traditional physiotherapy rehabilitation systems are evolving into more advanced systems based on exoskeleton systems and Virtual Reality (VR) environments that enhance and improve rehabilitation techniques and physical exercise. In addition, due to current connected systems and paradigms such as the Internet of Things (IoT) or Ambient Intelligent (AmI) systems, it is possible to design and develop advanced, effective, and low-cost medical tools that patients may have in their homes. This article presents a low-cost exoskeleton for the elbow that is connected to a Context-Aware architecture and thanks to a VR system the patient can perform rehabilitation exercises in an interactive way. The integration of virtual reality technology in rehabilitation exercises provides an intensive, repetitive and task-oriented capacity to improve patient motivation and reduce work on medical professionals. One of the system highlights is the intelligent ability to generate new exercises, monitor the exercises performed by users in search of progress or possible problems and the dynamic modification of the exercises characteristics. The platform also allows the incorporation of commercial medical sensors capable of collecting valuable information for greater accuracy in the diagnosis and evolution of patients. A case study with real patients with promising results has been carried out.


Subject(s)
Elbow Joint/physiology , Exercise Therapy , Exoskeleton Device , Virtual Reality , Biomechanical Phenomena , Humans
2.
Sensors (Basel) ; 18(3)2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29498653

ABSTRACT

Context-aware monitoring systems designed for e-Health solutions and ambient assisted living (AAL) play an important role in today's personalized health-care services. The majority of these systems are intended for the monitoring of patients' vital signs by means of bio-sensors. At present, there are very few systems that monitor environmental conditions and air quality in the homes of users. A home's environmental conditions can have a significant influence on the state of the health of its residents. Monitoring the environment is the key to preventing possible diseases caused by conditions that do not favor health. This paper presents a context-aware system that monitors air quality to prevent a specific health problem at home. The aim of this system is to reduce the incidence of the Sudden Infant Death Syndrome, which is triggered mainly by environmental factors. In the conducted case study, the system monitored the state of the neonate and the quality of air while it was asleep. The designed proposal is characterized by its low cost and non-intrusive nature. The results are promising.


Subject(s)
Air Pollution, Indoor , Air Pollution , Humans , Infant , Sudden Infant Death
3.
Sensors (Basel) ; 18(1)2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29342900

ABSTRACT

Nowadays, many citizens have busy days that make finding time for physical activity difficult. Thus, it is important to provide citizens with tools that allow them to introduce physical activity into their lives as part of the day's routine. This article proposes an app for an electric pedal-assist-system (PAS) bicycle that increases the pedaling intensity so the bicyclist can achieve higher and higher levels of physical activity. The app includes personalized assist levels that have been adapted to the user's strength/ability and a profile of the route, segmented according to its slopes. Additionally, a social component motivates interaction and competition between users based on a scoring system that shows the level of their performances. To test the training module, a case study in three different European countries lasted four months and included nine people who traveled 551 routes. The electric PAS bicycle with the app that increases intensity of physical activity shows promise for increasing levels of physical activity as a regular part of the day.


Subject(s)
Bicycling , Electricity , Exercise , Humans
4.
Sensors (Basel) ; 17(11)2017 10 31.
Article in English | MEDLINE | ID: mdl-29088087

ABSTRACT

The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

SELECTION OF CITATIONS
SEARCH DETAIL
...