Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Oxid Med Cell Longev ; 2018: 7239123, 2018.
Article in English | MEDLINE | ID: mdl-29576853

ABSTRACT

Alterations in cardiac energy metabolism play a key role in the pathogenesis of diabetic cardiomyopathy. Hypercholesterolemia associated with bioenergetic impairment and oxidative stress has not been well characterized in the cardiac function under glycemic control deficiency conditions. This work aimed to determine the cardioprotective effects of quercetin (QUE) against the damage induced by a high-cholesterol (HC) diet in hyperglycemic rats, addressing intracellular antioxidant mechanisms and bioenergetics. Quercetin reduced HC-induced alterations in the lipid profile and glycemia in rats. In addition, QUE attenuated cardiac diastolic dysfunction (increased E:A ratio), prevented cardiac cholesterol accumulation, and reduced the increase in HC-induced myocyte density. Moreover, QUE reduced HC-induced oxidative stress by preventing the decrease in GSH/GSSG ratio, Nrf2 nuclear translocation, HO-1 expression, and antioxidant enzymatic activity. Quercetin also counteracted HC-induced bioenergetic impairment, preventing a reduction in ATP levels and alterations in PGC-1α, UCP2, and PPARγ expression. In conclusion, the mechanisms that support the cardioprotective effect of QUE in rats with HC might be mediated by the upregulation of antioxidant mechanisms and improved bioenergetics on the heart. Targeting bioenergetics with QUE can be used as a pharmacological approach to modulate structural and functional changes of the heart under hypercholesterolemic and hyperglycemic conditions.


Subject(s)
Diet/adverse effects , Heart Murmurs/prevention & control , Hypercholesterolemia/drug therapy , Quercetin/pharmacology , Animals , Cholesterol/administration & dosage , Energy Metabolism , Heart Murmurs/drug therapy , Heart Murmurs/etiology , Hypercholesterolemia/pathology , Hyperglycemia/etiology , Hyperglycemia/physiopathology , Male , Oxidative Stress , Random Allocation , Rats , Rats, Wistar
2.
Redox Biol ; 9: 229-243, 2016 10.
Article in English | MEDLINE | ID: mdl-27591402

ABSTRACT

Studying rats fed high cholesterol diet and a pancreatic ß-cell line (Min6), we aimed to determine the mechanisms by which quercetin protects against cholesterol-induced pancreatic ß-cell dysfunction and impairments in glycemic control. Quercetin prevented the increase in total plasma cholesterol, but only partially prevented the high cholesterol diet-induced alterations in lipid profile. Quercetin prevented cholesterol-induced decreases in pancreatic ATP levels and mitochondrial bioenergetic dysfunction in Min6 cells, including decreases in mitochondrial membrane potentials and coupling efficiency in the mitochondrial respiration (basal and maximal oxygen consumption rate (OCR), ATP-linked OCR and reserve capacity). Quercetin protected against cholesterol-induced apoptosis of Min6 cells by inhibiting caspase-3 and -9 activation and cytochrome c release. Quercetin prevented the cholesterol-induced decrease in antioxidant defence enzymes from pancreas (cytosolic and mitochondrial homogenates) and Min6 cells and the cholesterol-induced increase of cellular and mitochondrial oxidative status and lipid peroxidation. Quercetin counteracted the cholesterol-induced activation of the NFκB pathway in the pancreas and Min6 cells, normalizing the expression of pro-inflammatory cytokines. Quercetin inhibited the cholesterol-induced decrease in sirtuin 1 expression in the pancreas and pancreatic ß-cells. Taken together, the anti-apoptotic, antioxidant and anti-inflammatory properties of quercetin, and its ability to protect and improve mitochondrial bioenergetic function are likely to contribute to its protective action against cholesterol-induced pancreatic ß-cell dysfunction, thereby preserving glucose-stimulated insulin secretion (GSIS) and glycemic control. Specifically, the improvement of ATP-linked OCR and the reserve capacity are important mechanisms for protection of quercetin. In addition, the inhibition of the NFκB pathway is an important mechanism for the protection of quercetin against cytokine mediated cholesterol-induced glycemic control impairment. In summary, our data highlight cellular, molecular and bioenergetic mechanisms underlying quercetin's protective effects on ß-cells in vitro and in vivo, and provide a scientifically tested foundation upon which quercetin can be developed as a nutraceutical to preserve ß-cell function.


Subject(s)
Cholesterol/metabolism , Inflammation/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Organelle Biogenesis , Quercetin/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Blood Glucose , Cell Line , Cell Survival/drug effects , Cytokines/metabolism , Gene Expression Regulation/drug effects , Inflammation Mediators/metabolism , Insulin/blood , Insulin/metabolism , Male , NF-kappa B/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...