Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Biology (Basel) ; 13(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392333

ABSTRACT

This study aims to explore the complex role of cannabinoid type 1 receptor (CB1) signaling in the gastrocnemius muscle, assessing physiological processes in both CB1+/+ and CB1-/- mice. The primary focus is to enhance our understanding of how CB1 contributes to mitochondrial homeostasis. At the tissue level, CB1-/- mice exhibit a substantial miRNA-related alteration in muscle fiber composition, characterized by an enrichment of oxidative fibers. CB1 absence induces a significant increase in the oxidative capacity of muscle, supported by elevated in-gel activity of Complex I and Complex IV of the mitochondrial respiratory chain. The increased oxidative capacity is associated with elevated oxidative stress and impaired antioxidant defense systems. Analysis of mitochondrial biogenesis markers indicates an enhanced capacity for new mitochondria production in CB1-/- mice, possibly adapting to altered muscle fiber composition. Changes in mitochondrial dynamics, mitophagy response, and unfolded protein response (UPR) pathways reveal a dynamic interplay in response to CB1 absence. The interconnected mitochondrial network, influenced by increased fusion and mitochondrial UPR components, underlines the dual role of CB1 in regulating both protein quality control and the generation of new mitochondria. These findings deepen our comprehension of the CB1 impact on muscle physiology, oxidative stress, and MQC processes, highlighting cellular adaptability to CB1-/-. This study paves the way for further exploration of intricate signaling cascades and cross-talk between cellular compartments in the context of CB1 and mitochondrial homeostasis.

4.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511435

ABSTRACT

The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.


Subject(s)
Metabolic Diseases , Mitochondria , Humans , Mitochondria/metabolism , Adipose Tissue/metabolism , Aging/metabolism , Cellular Senescence , Obesity/metabolism , Metabolic Diseases/metabolism
5.
Nutrients ; 15(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513513

ABSTRACT

Combining exercise with fasting is known to boost fat mass-loss, but detailed analysis on the consequential mobilization of visceral and subcutaneous WAT-derived fatty acids has not been performed. In this study, a subset of fasted male rats (66 h) was submitted to daily bouts of mild exercise. Subsequently, by using gas chromatography-flame ionization detection, the content of 22 fatty acids (FA) in visceral (v) versus subcutaneous (sc) white adipose tissue (WAT) depots was compared to those found in response to the separate events. Findings were related to those obtained in serum and liver samples, the latter taking up FA to increase gluconeogenesis and ketogenesis. Each separate intervention reduced scWAT FA content, associated with increased levels of adipose triglyceride lipase (ATGL) protein despite unaltered AMP-activated protein kinase (AMPK) Thr172 phosphorylation, known to induce ATGL expression. The mobility of FAs from vWAT during fasting was absent with the exception of the MUFA 16:1 n-7 and only induced by combining fasting with exercise which was accompanied with reduced hormone sensitive lipase (HSL) Ser563 and increased Ser565 phosphorylation, whereas ATGL protein levels were elevated during fasting in association with the persistently increased phosphorylation of AMPK at Thr172 both during fasting and in response to the combined intervention. As expected, liver FA content increased during fasting, and was not further affected by exercise, despite additional FA release from vWAT in this condition, underlining increased hepatic FA metabolism. Both fasting and its combination with exercise showed preferential hepatic metabolism of the prominent saturated FAs C:16 and C:18 compared to the unsaturated FAs 18:1 n-9 and 18:2 n-6:1. In conclusion, depot-specific differences in WAT fatty acid molecule release during fasting, irrelevant to their degree of saturation or chain length, are mitigated when combined with exercise, to provide fuel to surrounding organs such as the liver which is correlated with increased ATGL/ HSL ratios, involving AMPK only in vWAT.


Subject(s)
Fatty Acids , Sterol Esterase , Rats , Male , Animals , Sterol Esterase/metabolism , Fatty Acids/metabolism , AMP-Activated Protein Kinases/metabolism , Lipase/metabolism , Lipolysis/physiology , Obesity/metabolism , Fasting/metabolism , Adipose Tissue/metabolism
6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111329

ABSTRACT

Metabolic syndrome and obesity have become important health issues of epidemic proportions and are often the cause of related pathologies such as type 2 diabetes (T2DM), hypertension, and cardiovascular disease. Adipose tissues (ATs) are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. An ample body of evidence indicates that in some pathophysiological conditions, the aberrant remodeling of adipose tissue may provoke dysregulation in the production of various adipocytokines and metabolites, thus leading to disorders in metabolic organs. Thyroid hormones (THs) and some of their derivatives, such as 3,5-diiodo-l-thyronine (T2), exert numerous functions in a variety of tissues, including adipose tissues. It is known that they can improve serum lipid profiles and reduce fat accumulation. The thyroid hormone acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein 1 (UCP1) to generate heat. Multitudinous investigations suggest that 3,3',5-triiodothyronine (T3) induces the recruitment of brown adipocytes in white adipose depots, causing the activation of a process known as "browning". Moreover, in vivo studies on adipose tissues show that T2, in addition to activating brown adipose tissue (BAT) thermogenesis, may further promote the browning of white adipose tissue (WAT), and affect adipocyte morphology, tissue vascularization, and the adipose inflammatory state in rats receiving a high-fat diet (HFD). In this review, we summarize the mechanism by which THs and thyroid hormone derivatives mediate adipose tissue activity and remodeling, thus providing noteworthy perspectives on their efficacy as therapeutic agents to counteract such morbidities as obesity, hypercholesterolemia, hypertriglyceridemia, and insulin resistance.

7.
FASEB J ; 36(5): e22325, 2022 05.
Article in English | MEDLINE | ID: mdl-35452152

ABSTRACT

The physiological role played by uncoupling protein 3 (UCP3) in white adipose tissue (WAT) has not been elucidated so far. In the present study, we evaluated the impact of the absence of the whole body UCP3 on WAT physiology in terms of ability to store triglycerides, oxidative capacity, response to insulin, inflammation, and adipokine production. Wild type (WT) and UCP3 Knockout (KO) mice housed at thermoneutrality (30°C) have been used as the animal model. Visceral gonadic WAT (gWAT) from KO mice showed an impaired capacity to store triglycerides (TG) as indicated by its lowered weight, reduced adipocyte diameter, and higher glycerol release (index of lipolysis). The absence of UCP3 reduces the maximal oxidative capacity of gWAT, increases mitochondrial free radicals, and activates ER stress. These processes are associated with increased levels of monocyte chemoattractant protein-1 and TNF-α. The response of gWAT to in vivo insulin administration, revealed by (ser473)-AKT phosphorylation, was blunted in KO mice, with a putative role played by eif2a, JNK, and inflammation. Variations in adipokine levels in the absence of UCP3 were observed, including reduced adiponectin levels both in gWAT and serum. As a whole, these data indicate an important role of UCP3 in regulating the metabolic functionality of gWAT, with its absence leading to metabolic derangement. The obtained results help to clarify some aspects of the association between metabolic disorders and low UCP3 levels.


Subject(s)
Insulin Resistance , Adipokines/metabolism , Adipose Tissue, White/metabolism , Animals , Inflammation/metabolism , Insulin/metabolism , Lipolysis , Mice , Mice, Knockout , Triglycerides/metabolism , Uncoupling Protein 3/metabolism
8.
Nutrients ; 14(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35334826

ABSTRACT

Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.


Subject(s)
Amino Acids, Branched-Chain , Brain-Derived Neurotrophic Factor , Animals , Brain-Derived Neurotrophic Factor/metabolism , Chromatography, Liquid , Fasting , Male , Mammals/metabolism , Muscle, Skeletal/metabolism , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , TOR Serine-Threonine Kinases/metabolism , Tandem Mass Spectrometry , Thyroid Hormones/metabolism
9.
Genes (Basel) ; 13(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35205361

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as the presence of hepatic steatosis in addition to one of three metabolic conditions: overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation. Chronic exposure to excess dietary fatty acids may cause hepatic steatosis and metabolic disturbances. The alteration of the quality of mitochondria is one of the factors that could contribute to the metabolic dysregulation of MAFDL. This study was designed to determine, in a rodent model of MAFLD, the effects of a long-term high-fat diet (HFD) on some hepatic processes that characterize mitochondrial quality control, such as biogenesis, dynamics, and mitophagy. To mimic the human manifestation of MAFLD, the rats were exposed to both an HFD and a housing temperature within the rat thermoneutral zone (28-30 °C). After 14 weeks of the HFD, the rats showed significant fat deposition and liver steatosis. Concomitantly, some important factors related to the hepatic mitochondrial quality were markedly affected, such as increased mitochondrial reactive oxygen species (ROS) production and mitochondrial DNA (mtDNA) damage; reduced mitochondrial biogenesis, mtDNA copy numbers, mtDNA repair, and mitochondrial fusion. HFD-fed rats also showed an impaired mitophagy. Overall, the obtained data shed new light on the network of different processes contributing to the failure of mitochondrial quality control as a central event for mitochondrial dysregulation in MAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Liver Diseases , Animals , DNA, Mitochondrial/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Liver Diseases/metabolism , Mitochondria/metabolism , Rats
10.
Front Endocrinol (Lausanne) ; 12: 703170, 2021.
Article in English | MEDLINE | ID: mdl-34322094

ABSTRACT

3,5-diiodo-thyronine (T2), an endogenous metabolite of thyroid hormones, exerts beneficial metabolic effects. When administered to overweight rats receiving a high fat diet (HFD), it significantly reduces body fat accumulation, which is a risk factor for the development of an inflammatory state and of related metabolic diseases. In the present study, we focused our attention on T2 actions aimed at improving the adverse effects of long-lasting HFD such as the adipocyte inflammatory response. For this purpose, three groups of rats were used throughout: i) receiving a standard diet for 14 weeks; ii) receiving a HFD for 14 weeks, and iii) receiving a HFD for 14 weeks with a simultaneous daily injection of T2 for the last 4 weeks. The results showed that T2 administration ameliorated the expression profiles of pro- and anti-inflammatory cytokines, reduced macrophage infiltration in white adipose tissue, influenced their polarization and reduced lymphocytes recruitment. Moreover, T2 improved the expression of hypoxia markers, all altered in HFD rats, and reduced angiogenesis by decreasing the pro-angiogenic miR126 expression. Additionally, T2 reduced the oxidative damage of DNA, known to be associated to the inflammatory status. This study demonstrates that T2 is able to counteract some adverse effects caused by a long-lasting HFD and to produce beneficial effects on inflammation. Irisin and SIRT1 pathway may represent a mechanism underlying the above described effects.


Subject(s)
Diet, High-Fat/adverse effects , Diiodothyronines/pharmacology , Hypoxia/drug therapy , Inflammation/drug therapy , Intra-Abdominal Fat/drug effects , Macrophages/drug effects , Neovascularization, Pathologic/drug therapy , Adipokines/metabolism , Animals , DNA Damage , Hypoxia/metabolism , Hypoxia/pathology , Inflammation/etiology , Inflammation/pathology , Intra-Abdominal Fat/immunology , Intra-Abdominal Fat/metabolism , Macrophages/immunology , Male , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Overweight/physiopathology , Oxidative Stress , Rats , Rats, Wistar
11.
Front Endocrinol (Lausanne) ; 12: 631176, 2021.
Article in English | MEDLINE | ID: mdl-33746903

ABSTRACT

Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.


Subject(s)
Iodide Peroxidase/metabolism , Proteomics/methods , Thermogenesis/drug effects , Thermogenesis/physiology , Adipose Tissue , Adipose Tissue, White , Animals , Body Composition , Caloric Restriction , Energy Metabolism/physiology , Glucose/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Kinetics , Liver/metabolism , Male , Mass Spectrometry , Muscle Contraction , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley , Thyroid Gland/metabolism , Weight Gain
12.
Int J Sport Nutr Exerc Metab ; 30(6): 386-395, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32998111

ABSTRACT

Fasting enhances the beneficial metabolic outcomes of exercise; however, it is unknown whether body composition is favorably modified on the short term. A baseline-follow-up study was carried out to assess the effect of an established protocol involving short-term combined exercise with fasting on body composition. One hundred seven recreationally exercising males underwent a 10-day intervention across 15 fitness centers in the Netherlands involving a 3-day gradual decrease of food intake, a 3-day period with extremely low caloric intake, and a gradual 4-day increase to initial caloric intake, with daily 30-min submaximal cycling. Using dual-energy X-ray absorptiometry analysis, all subjects substantially lost total body mass (-3.9 ± 1.9 kg; p < .001) and fat mass (-3.3 ± 1.3 kg; p < .001). Average lean mass was lost (-0.6 ± 1.5 kg; p < .001), but lean mass as a percentage of total body mass was not reduced. The authors observed a loss of -3.9 ± 1.9% android fat over total fat mass (p < .001), a loss of -2.2 ± 1.9% gynoid over total fat mass (p < .001), and reduced android/gynoid ratios (-0.05 ± 0.1; p < .001). Analyzing 15 preselected single-nucleotide polymorphisms in 13 metabolism-related genes revealed trending associations for thyroid state-related single-nucleotide polymorphisms rs225014 (deiodinase 2) and rs35767 (insulin-like growth factor1), and rs1053049 (PPARD). In conclusion, a short period of combined fasting and exercise leads to a substantial loss of body and fat mass without a loss of lean mass as a percentage of total mass.


Subject(s)
Body Composition , Exercise , Fasting , Absorptiometry, Photon , Adult , Energy Intake , Follow-Up Studies , Humans , Male , Middle Aged , Netherlands , Polymorphism, Single Nucleotide , Young Adult
13.
FASEB J ; 34(11): 15146-15163, 2020 11.
Article in English | MEDLINE | ID: mdl-32946628

ABSTRACT

The physiological role played by uncoupling protein 3 (UCP3) in brown adipose tissue (BAT) has not been fully elucidated so far. In the present study, we evaluated the impact of the absence of UCP3 on BAT mitochondrial functionality and morphology. To this purpose, wild type (WT) and UCP3 Knockout (KO) female mice were housed at thermoneutrality (30°C), a condition in which BAT contributes to energy homeostasis independently of its cold-induced thermogenic function. BAT mitochondria from UCP3 KO mice presented a lower ability to oxidize the fatty acids and glycerol-3-phosphate, and an enhanced oxidative stress as revealed by enhanced mitochondrial electron leak, lipid hydroperoxide levels, and induction of antioxidant mitochondrial enzymatic capacity. The absence of UCP3 also influenced the mitochondrial super-molecular protein aggregation, an important feature for fatty acid oxidation rate as well as for adequate cristae organization and mitochondrial shape. Indeed, electron microscopy revealed alterations in mitochondrial morphology in brown adipocytes from KO mice. In the whole, data here reported show that the absence of UCP3 results in a significant alteration of BAT mitochondrial physiology and morphology. These observations could also help to clarify some aspects of the association between metabolic disorders associated with low UCP3 levels, as previously reported in human studies.


Subject(s)
Adipose Tissue, Brown/pathology , Fatty Acids/metabolism , Mitochondria/pathology , Oxidative Stress , Thermogenesis , Uncoupling Protein 3/physiology , Adipose Tissue, Brown/metabolism , Animals , Energy Metabolism , Female , Homeostasis , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction
14.
Article in English | MEDLINE | ID: mdl-32477274

ABSTRACT

The present investigation was undertaken to increase our insight into the molecular basis of the physiological changes in rat testis induced by food withdrawal, and to clarify whether reduced testicular function can be ameliorated by mild exercise. Male rats were selected for four separate experiments. The first of each group was chow-fed, the second was chow-fed and submitted to exercise (5 bouts in total for 30 min at 15 m/min, and 0° inclination), the third was submitted to food withdrawal (66 h) and the fourth was submitted to food withdrawal and to exercise. At the end of experiments, we investigated (i) serum and testicular sex hormone levels; (ii) protein levels of StAR, 3ß-Hydroxysteroid dehydrogenase (3ß-HSD) and P450 aromatase, which play a key role in steroid hormone biosynthesis; and (iii) protein levels of mitotic and meiotic markers of spermatogenesis in rats, in relation to testis morphology and morphometry. We found that mild exercise or food withdrawal alone induced a significant increase or decrease in both serum and testis testosterone levels, respectively. Interestingly, we found that these levels were brought back to basal levels when food withdrawal was combined with mild exercise. The changes in testosterone levels observed in our experimental groups correlated well with the expression of steroidogenic enzymes as well as with spermatogenic activity. With mild exercise the increased testosterone/17ß-estradiol (T/E2) ratio in the testis correlated with an increased spermatogenic activity. The T/E2 ratio dropped in fasted rats and was significantly reversed when food withdrawal was combined with exercise. Histological and morphometric analyses confirmed that spermatogenic activity varied in concomitance with each experimental condition. Importantly, the testis and serum T/E2 ratios correlated, confirming that exercise rescues the decline in food withdrawal-induced spermatogenesis. In conclusion, this study highlights that mild exercise normalizes the reduced spermatogenic activity caused by food withdrawal through the modulation of the steroidogenic pathway and restoring the T/E2 ratio, underlining the beneficial effects of mild exercise on the prevention and/or amelioration of reduced testis function caused by restricted caloric intake.


Subject(s)
Caloric Restriction , Fasting , Gonadal Steroid Hormones/biosynthesis , Physical Conditioning, Animal , Spermatogenesis , Steroids/biosynthesis , Testis/metabolism , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Gene Expression Regulation , Male , Phosphoproteins/genetics , Phosphoproteins/metabolism , Rats , Rats, Wistar
15.
Physiol Rep ; 8(3): e14354, 2020 02.
Article in English | MEDLINE | ID: mdl-32034884

ABSTRACT

Exercise under fasting conditions induces a switch to lipid metabolism, eliciting beneficial metabolic effects. Knowledge of signaling responses underlying metabolic adjustments in such conditions may help to identify therapeutic strategies. Therefore, we studied the effect of mild exercise on rats submitted to food withdrawal at thermoneutrality (28°C) for 3 days. Animals were housed at thermoneutrality rather than the standard housing temperature (22°C) to avoid beta-adrenergic signaling responses that themselves affect metabolism and well-being. Quantitative analysis of multi-organ mRNA levels, myofibers, and serum metabolites shows that this protocol (a) boosts fat oxidation in muscle and liver, (b) reduces lipogenesis and increases gluconeogenesis in liver, (c) increases serum acylcarnitines (especially C4 OH) and ketone bodies and the use of the latter as fuel in muscle, (d) increases Type I myofibers, and (e) is associated with an increased thyroid hormone uptake and metabolism in muscle. In addition, stool microbiome DNA analysis revealed that food withdrawal dramatically alters the presence of bacterial genera associated with ketone metabolism. Taken together, this protocol induces a drastic switch toward increased lipid and ketone metabolism compared to exercise or food withdrawal alone, which may prove beneficial and may involve local thyroid hormones, which may be regarded as exercise mimetics.


Subject(s)
Fasting/metabolism , Gastrointestinal Microbiome , Lipid Metabolism , Motor Activity , Muscle Fibers, Skeletal/metabolism , Thyroid Hormones/blood , AMP-Activated Protein Kinase Kinases , Animals , Carnitine/analogs & derivatives , Carnitine/blood , Energy Metabolism , Fasting/physiology , Ketone Bodies/blood , Liver/metabolism , Male , Phosphorylation , Protein Kinases/metabolism , Rats , Rats, Wistar , Temperature
16.
Sci Rep ; 9(1): 16645, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719576

ABSTRACT

The 3,5-diiodo-L-thyronine (T2) has emerged as an active iodothyronine and its beneficial effects on glucose metabolism including glucose tolerance and insulin resistance is well established. However, little is known about its molecular mechanisms. Given the emerging importance of microRNAs in various metabolic diseases, in this study a possible link between the effects of T2 on glucose metabolism and miRNA expression was investigated by using an in vivo model in which T2 was administered in rats receiving a high fat diet, a condition known to impair glucose homeostasis. The results showed that T2-treated rats had a better tolerance to glucose load and a better performance at the insulin tolerance test in comparison to high fat diet animals. Interestingly, in the serum of the animals treated with T2 there was a general decrease of miRNAs with miR-22a-3p, miR-34c-5p and miR-33a-3p significantly downregulated. Furthermore, miR-22a-3p had the largest variation pointing toward its preeminent role in T2 metabolic effect. In fact, in liver there was an up-regulation of its target (Transcription Factor 7) Tcf7, which had an important impact on gluconeogenesis. This study provide, for the first time, evidences that miRNAs are involved in the effects exerted by T2 on glucose homeostasis.


Subject(s)
Diiodothyronines/pharmacology , Gluconeogenesis/drug effects , MicroRNAs/physiology , Animals , Diet, High-Fat/adverse effects , Glucose/metabolism , Male , Metabolic Networks and Pathways/drug effects , MicroRNAs/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
17.
Cells ; 8(8)2019 08 17.
Article in English | MEDLINE | ID: mdl-31426456

ABSTRACT

The role of uncoupling protein-3 (UCP3) in energy and lipid metabolism was investigated. Male wild-type (WT) and UCP3-null (KO) mice that were housed at thermoneutrality (30 °C) were used as the animal model. In KO mice, the ability of skeletal muscle mitochondria to oxidize fatty acids (but not pyruvate or succinate) was reduced. At whole animal level, adult KO mice presented blunted resting metabolic rates, energy expenditure, food intake, and the use of lipids as metabolic substrates. When WT and KO mice were fed with a standard/low-fat diet for 80 days, since weaning, they showed similar weight gain and body composition. Interestingly, KO mice showed lower fat accumulation in visceral adipose tissue and higher ectopic fat accumulation in liver and skeletal muscle. When fed with a high-fat diet for 80 days, since weaning, KO mice showed enhanced energy efficiency and an increased lipid gain (thus leading to a change in body composition between the two genotypes). We conclude that UCP3 plays a role in energy and lipid homeostasis and in preserving lean tissues by lipotoxicity, in mice that were housed at thermoneutrality.


Subject(s)
Adipose Tissue, White/metabolism , Fatty Acids/metabolism , Liver/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Uncoupling Protein 3/physiology , Animals , Energy Metabolism , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Weight Gain
19.
Article in English | MEDLINE | ID: mdl-31024454

ABSTRACT

This study evaluated the effect of 3,5-diiodo-L-thyronine (T2) and 3,5,3'-triiodo-L-thyronine (T3) on rat liver mitochondrial DNA (mtDNA) oxidative damage and repair and to investigate their ability to induce protective effects against oxidative stress. Control rats, rats receiving a daily injection of T2 (N+T2) for 1 week and rats receiving a daily injection of T3 (N+T3) for 1 week, were used throughout the study. In the liver, mtDNA oxidative damage [by measuring mtDNA lesion frequency and expression of DNA polymerase γ (POLG)], mtDNA copy number, mitochondrial biogenesis [by measuring amplification of mtDNA/nDNA and expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)], and oxidative stress [by measuring serum levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were detected. T2 reduces mtDNA lesion frequency and increases the expression of POLG, and it does not change the mtDNA copy number, the expression of PGC-1α, or the serum levels of 8-OHdG. Therefore, T2, by stimulating the major mtDNA repair enzyme, maintains genomic integrity. Similar to T2, T3 decreases mtDNA lesion frequency but increases the serum levels of 8-OHdG, and it decreases the expression of POLG. Moreover, as expected, T3 increases the mtDNA copy number and the expression of PGC-1α. Thus, in T3-treated rats, the increase of 8-OHdG and the decrease of POLG indicate that there is increased oxidative damage and that the decreased mtDNA lesion frequency might be a consequence of increased mitochondrial biogenesis. These data demonstrate that both T2 and T3 are able to decrease in the liver mtDNA oxidative damage, but they act via different mechanisms.

20.
Cells ; 8(3)2019 03 18.
Article in English | MEDLINE | ID: mdl-30889829

ABSTRACT

The conversion of white adipose cells into beige adipose cells is known as browning, a process affecting energy metabolism. It has been shown that 3,5 diiodo-l-thyronine (T2), an endogenous metabolite of thyroid hormones, stimulates energy expenditure and a reduction in fat mass. In light of the above, the purpose of this study was to test whether in an animal model of fat accumulation, T2 has the potential to activate a browning process and to explore the underlying mechanism. Three groups of rats were used: (i) receiving a standard diet for 14 weeks; (ii) receiving a high-fat diet (HFD) for 14 weeks; and (iii) receiving a high fat diet for 10 weeks and being subsequently treated for four weeks with an HFD together with the administration of T2. We showed that T2 was able to induce a browning in the white adipose tissue of T2-treated rats. We also showed that some miRNA (miR133a and miR196a) and MAP kinase 6 were involved in this process. These results indicate that, among others, the browning may be another cellular/molecular mechanism by which T2 exerts its beneficial effects of contrast to overweight and of reduction of fat mass in rats subjected to HFD.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat , Diiodothyronines/pharmacology , Housing, Animal , Overweight/pathology , Temperature , Adenylate Kinase/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Adiposity/drug effects , Animals , Diiodothyronines/administration & dosage , Down-Regulation/drug effects , Fibronectins/blood , Insulin/metabolism , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphorylation/drug effects , Rats, Wistar , Transcription Factors/metabolism , Uncoupling Protein 1/metabolism , Up-Regulation/drug effects , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...