Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Traffic ; 20(5): 311-324, 2019 05.
Article in English | MEDLINE | ID: mdl-30972921

ABSTRACT

Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail-anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40-insert and the hydrophobic groove essential for tail-anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40-insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40-insert is present in all domains of life, we suggest that its presence does not automatically predict a tail-anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40-insert but have not been demonstrated to function in tail-anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.


Subject(s)
Adenosine Triphosphatases/chemistry , Arsenite Transporting ATPases/chemistry , Evolution, Molecular , Guanine Nucleotide Exchange Factors/chemistry , Molecular Chaperones/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Arsenite Transporting ATPases/genetics , Arsenite Transporting ATPases/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Ion Pumps/chemistry , Ion Pumps/genetics , Ion Pumps/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
2.
J Biol Chem ; 291(44): 23136-23148, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27624934

ABSTRACT

Little is known about the conservation of critical kinetic parameters and the mechanistic strategies of elongation factor (EF) Ts-catalyzed nucleotide exchange in EF-Tu in bacteria and particularly in clinically relevant pathogens. EF-Tu from the clinically relevant pathogen Pseudomonas aeruginosa shares over 84% sequence identity with the corresponding elongation factor from Escherichia coli Interestingly, the functionally closely linked EF-Ts only shares 55% sequence identity. To identify any differences in the nucleotide binding properties, as well as in the EF-Ts-mediated nucleotide exchange reaction, we performed a comparative rapid kinetics and mutagenesis analysis of the nucleotide exchange mechanism for both the E. coli and P. aeruginosa systems, identifying helix 13 of EF-Ts as a previously unnoticed regulatory element in the nucleotide exchange mechanism with species-specific elements. Our findings support the base side-first entry of the nucleotide into the binding pocket of the EF-Tu·EF-Ts binary complex, followed by displacement of helix 13 and rapid binding of the phosphate side of the nucleotide, ultimately leading to the release of EF-Ts.


Subject(s)
Bacterial Proteins/metabolism , Nucleotides/metabolism , Peptide Elongation Factor Tu/metabolism , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/metabolism , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Kinetics , Models, Molecular , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factors/genetics , Protein Binding , Protein Conformation, alpha-Helical , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics
3.
Sci Rep ; 5: 8573, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25712150

ABSTRACT

The bacterial translational GTPase EF4/LepA is structurally similar to the canonical elongation factor EF-G. While sharing core structural features with other translational GTPases, the function of EF4 remains unknown. Recent structural data locates the unique C-terminal domain (CTD) of EF4 in proximity to the ribosomal peptidyl transferase center (PTC). To investigate the functional role of EF4's CTD we have constructed three C-terminal truncation variants. These variants are fully functional with respect to binding mant-GTP and mant-GDP as determined by rapid kinetics, as well as their intrinsic multiple turnover GTPase activity. Furthermore, they are able to form stable complexes with the 70S ribosome and 50S/30S ribosomal subunits. However, successive removal of the C-terminus impairs ribosome-dependent multiple turnover GTPase activity of EF4, which for the full-length protein is very similar to EF-G. Our findings suggest that the last 44 C-terminal amino acids of EF4 form a sub-domain within the C-terminal domain that is important for GTP-dependent function on the ribosome. Additionally, we show that efficient nucleotide hydrolysis by EF4 on the ribosome depends on a conserved histidine (His 81), similar to EF-G and EF-Tu.


Subject(s)
Escherichia coli Proteins/metabolism , Peptide Initiation Factors/metabolism , Ribosomes/metabolism , Biocatalysis , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Guanosine Diphosphate/chemistry , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Kinetics , Mutagenesis , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/genetics , Protein Binding , Protein Structure, Tertiary , Ribosomes/chemistry
4.
Biochim Biophys Acta ; 1814(5): 684-92, 2011 May.
Article in English | MEDLINE | ID: mdl-21338717

ABSTRACT

In order to study the structural and functional requirements of the essential translational GTPase elongation factor (EF) Tu for efficient and accurate ribosome-dependent protein synthesis, construction of a cysteine-free (Cys-less) mutant variant allowing for the site-directed introduction of fluorescent and non-fluorescent labels is of great importance. However, previous reports suggest that a cysteine residue in position 81 of EF-Tu from Escherichia coli is essential for its function. To study the functional role of cysteine 81 and to construct a fully active Cys-less EF-Tu, we have analyzed 125 bacterial sequences with respect to sequence variations in this position revealing that in a small number of sequences alanine and methionine can be found. Here we report the detailed comparative biochemical analysis of three Cys-less variants of EF-Tu containing these substitutions as well as the isosteric amino acid serine. By characterizing nucleotide binding, EF-Ts interaction, aminoacyl-tRNA binding, and delivery to the ribosome, we demonstrate that only alanine (or cysteine) can be tolerated in this position and that the serine and methionine substitutions significantly impair aminoacyl-tRNA, but not nucleotide binding. Our findings suggest a critical functional role of the amino acid residue in position 81 of EF-Tu with respect to aminoacyl-tRNA binding. Based on structural considerations, we suggest that position 81 indirectly contributes to aminoacyl-tRNA binding through the accurate positioning of helix B.


Subject(s)
Cysteine/chemistry , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/metabolism , Amino Acid Sequence , Cysteine/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Elongation Factor Tu/genetics , Protein Structure, Secondary , Sequence Homology, Amino Acid , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...