Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Eur J Pharm Sci ; 158: 105678, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33340635

ABSTRACT

Malignancies such as lung, breast and pancreatic carcinomas are associated with increased expression of the epidermal growth factor receptor, EGFR, and its role in the pathogenesis and progression of tumors has made this receptor a prime target in the development of antitumor therapies. In therapies targeting EGFR, the development of resistance owing to mutations and single nucleotide polymorphisms, and the expression of the receptor ligands themselves are very serious issues. In this work, both the ligand neuregulin and a bispecific antibody fragment to EGFR are conjugated separately or together to the same drug-delivery system to find the most promising candidate. Camptothecin is used as a model chemotherapeutic drug and superparamagnetic iron oxide nanoparticles as a delivery system. Results show that the lowest LD50 is achieved by formulations conjugated to both the antibody and the ligand, demonstrating a synergy. Additionally, the ligand location in the nucleus favors the antitumor activity of Camptothecin. The high loading capacity and efficiency convert these systems into a good alternative for administering Camptothecin, a drug whose use is otherwise severely limited by its chemical instability and poor solubility. Our choice of targeting agents allows treating tumors that express ErbB2 (Her2+ tumors) as well as Her2- tumors expressing EGFR.


Subject(s)
Antineoplastic Agents , Neoplasms , Antibodies/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , ErbB Receptors , Humans , Neoplasms/drug therapy , Neuregulins/therapeutic use , Receptor, ErbB-2 , Xenograft Model Antitumor Assays
2.
Orphanet J Rare Dis ; 12(1): 23, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28166796

ABSTRACT

BACKGROUND: Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal ß-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. RESULTS: Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. CONCLUSION: These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.


Subject(s)
Gaucher Disease/metabolism , Macrophages/drug effects , Ubiquinone/analogs & derivatives , Glucosylceramidase , Humans , Inflammasomes , Lysosomes , Mitophagy/drug effects , Mitophagy/physiology , Reactive Oxygen Species , THP-1 Cells/drug effects , THP-1 Cells/metabolism , Ubiquinone/administration & dosage , Ubiquinone/pharmacology
3.
Curr Drug Targets ; 18(9): 1030-1038, 2017.
Article in English | MEDLINE | ID: mdl-27231105

ABSTRACT

BACKGROUND: The molecular crosstalk between inflammation and autophagy is an emerging field of research that is essential for the understanding of multicellular organism homeostasis and how these processes influence a variety of pathological conditions. OBJECTIVE: In this review, we briefly describe the relationship between autophagy and inflammasome activation. The central role that mitochondria play in both cellular processes is also discussed. CONCLUSION: Inflammasome and autophagy often modulate each other by common inhibitory mechanisms that are controlled by different input pathways. Thus, inflammasome components coordinate autophagy and autophagy regulates inflammasome activation, making the balance between both processes a fundamental player in cellular homeostasis.


Subject(s)
Autophagy , Inflammasomes/physiology , Mitochondria/physiology , Cell Death , Humans
4.
Apoptosis ; 22(3): 421-436, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27943067

ABSTRACT

Cell cytoskeleton makes profound changes during apoptosis including the organization of an Apoptotic Microtubule Network (AMN). AMN forms a cortical structure which plays an important role in preserving plasma membrane integrity during apoptosis. Here, we examined the cytoskeleton rearrangements during apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. Using fixed and living cell imaging, we showed that CPT induced two dose- and cell cycle-dependent types of apoptosis characterized by different cytoskeleton reorganizations, time-dependent caspase activation and final apoptotic cell morphology. In the one referred as "slow" (~h) or round-shaped, apoptosis was characterized by a slow contraction of the actinomyosin ring and late caspase activation. In "slow" apoptosis the γ-tubulin complexes were not disorganized and microtubules were not depolymerized at early stages. In contrast, "fast" (~min) or irregular-shaped apoptosis was characterized by early caspase activation followed by full contraction of the actinomyosin ring. In fast apoptosis γ-tubulin complexes were disorganized and microtubules were initially depolymerized. However, after actinomyosin contraction, microtubules were reformed adopting a cortical but irregular disposition near plasma membrane. In addition to distinctive cytoskeleton reorganization kinetics, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocytes response. Our results suggest that the knowledge and modulation of the type of apoptosis promoted by genotoxic agents may be important for deciding a better therapeutic option and predicting the immune response in cancer treatment.


Subject(s)
Apoptosis/physiology , Camptothecin/pharmacology , Cytoskeleton/drug effects , DNA Damage , Topoisomerase I Inhibitors/pharmacology , Actomyosin/metabolism , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Shape , Cytoskeleton/physiology , Dose-Response Relationship, Drug , Enzyme Activation , Humans , LLC-PK1 Cells , Microtubules/drug effects , Microtubules/ultrastructure , Phagocytosis/drug effects , Swine , Tubulin/drug effects
5.
Exp Suppl ; 107: 45-71, 2016.
Article in English | MEDLINE | ID: mdl-27812976

ABSTRACT

In eukaryotic cells, AMP-activated protein kinase (AMPK) generally promotes catabolic pathways that produce ATP and at the same time inhibits anabolic pathways involved in different processes that consume ATP. As an energy sensor, AMPK is involved in the main cellular functions implicated in cell fate, such as cell growth and autophagy.Recently, AMPK has been connected with apoptosis regulation, although the molecular mechanism by which AMPK induces and/or inhibits cell death is not clear.This chapter reviews the essential role of AMPK in signaling pathways that respond to cellular stress and damage, highlighting the complex and reciprocal regulation between AMPK and their targets and effectors. The therapeutic implications of the role of AMPK in different pathologies such as diabetes, cancer, or mitochondrial dysfunctions are still controversial, and it is necessary to further investigate the molecular mechanisms underlying AMPK activation.


Subject(s)
AMP-Activated Protein Kinases/genetics , Apoptosis/genetics , Autophagy/genetics , Energy Metabolism/genetics , Eukaryotic Cells/enzymology , Gene Expression Regulation , AMP-Activated Protein Kinases/metabolism , Cell Cycle Checkpoints/genetics , Cell Proliferation , Eukaryotic Cells/cytology , Fatty Acids/metabolism , Glucose/metabolism , Humans , Lipogenesis/genetics , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Unfolded Protein Response/genetics
6.
Genes Cancer ; 7(7-8): 260-277, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27738496

ABSTRACT

Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.

7.
Curr Drug Targets ; 17(8): 921-31, 2016.
Article in English | MEDLINE | ID: mdl-26758671

ABSTRACT

The AMP-activated protein kinase (AMPK) has emerged as an important sensor of signals that control cellular energy balance in all eukaryotes. AMPK is also involved in fatty acid oxidation, glucose transport, antioxidant defense, mitochondrial biogenesis and the modulation of inflammatory processes. The numerous roles of AMPK in cell physiological and pathological states justified the notable increase in the number of publications in previous years, with almost 1500 scientific articles relative to this kinase in 2014. Due to its role in maintaining energy balance, a dysfunction in AMPK signalling pathway may result in perturbations at the systemic level that contribute to the development of many disease conditions. Among them, more than 7000 poorly-known rare diseases are particularly of social and scientific interest because they are usually chronically debilitating or even lifethreatening and lack effective and safe treatment. Several authors have demonstrated AMPK alterations and the beneficial effect of treatments with drugs regulating AMPK activity in some of these low prevalence pathologies. Among these rare diseases in which AMPK can play an important pathological role are mitochondrial disorders, muscular dystrophies, cardiovascular diseases, neurodegenerative pathologies, or even some types of cancer for the importance of AMPK as a suppressor of cell proliferation. This review focuses on current knowledge about the pathophysiological roles of AMPK and future approaches as therapeutic targeting in rare diseases.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Rare Diseases/drug therapy , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/chemistry , Animals , Cell Proliferation , Energy Metabolism/drug effects , Humans , Oxidation-Reduction/drug effects , Phosphorylation , Protein Kinase Inhibitors/therapeutic use , Rare Diseases/enzymology , Signal Transduction
9.
Expert Opin Ther Targets ; 20(4): 487-500, 2016.
Article in English | MEDLINE | ID: mdl-26523761

ABSTRACT

INTRODUCTION: Mitochondrial diseases are a group of rare genetic diseases with complex and heterogeneous origins which manifest a great variety of phenotypes. Disruption of the oxidative phosphorylation system is the main cause of pathogenicity in mitochondrial diseases since it causes accumulation of reactive oxygen species (ROS) and ATP depletion. AREAS COVERED: Current evidences support the main protective role of autophagy and mitophagy in mitochondrial diseases and other diseases associated with mitochondrial dysfunction. EXPERT OPINION: The use of autophagy and/or mitophagy inducers may allow a novel strategy for improving mitochondrial function for both mitochondrial diseases and other diseases with altered mitochondrial metabolism. However, a deeper investigation of the molecular mechanisms behind mitophagy and mitochondrial biogenesis is needed in order to safely modulate these processes. In the coming years, we will also see an increase in awareness of mitochondrial dynamics modulation that will allow the therapeutic use of new drugs for improving mitochondrial function in a great variety of mitochondrial disorders.


Subject(s)
Mitochondria/drug effects , Mitochondrial Diseases/drug therapy , Molecular Targeted Therapy , Adenosine Triphosphate/metabolism , Animals , Autophagy/drug effects , Drug Design , Humans , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/physiopathology , Mitophagy/drug effects , Reactive Oxygen Species/metabolism
10.
Diseases ; 5(1)2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28933354

ABSTRACT

Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton's disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases.

11.
Diseases ; 4(4)2016 Oct 11.
Article in English | MEDLINE | ID: mdl-28933411

ABSTRACT

Lysosomal storage diseases (LSDs) describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS), where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm), diminished ATP production and increased generation of reactive oxygen species (ROS). Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD), the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme ß-glucocerebrosidase (GCase). Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

12.
Cytoskeleton (Hoboken) ; 72(9): 435-46, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26382917

ABSTRACT

Apoptosis is a genetically programmed energy-dependent process of cell demise, characterized by specific morphological and biochemical events in which the activation of caspases has an essential role. During apoptosis the cytoskeleton participates actively in characteristic morphological rearrangements of the dying cell. This reorganisation has been assigned mainly to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent reports have showed that microtubules are reformed during the execution phase of apoptosis organizing an apoptotic microtubule network (AMN). AMN is organized behind plasma membrane, forming a cortical structure. Apoptotic microtubules repolymerization takes place in many cell types and under different apoptotic inducers. It has been hypothesized that AMN is critical for maintaining plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disorganization leads apoptotic cells to secondary necrosis and the release of potential toxic molecules which can damage neighbor cells and promotes inflammation. Therefore, AMN formation during physiological apoptosis or in pathological apoptosis induced by anti-cancer treatments is essential for tissue homeostasis and the prevention of additional cell damage and inflammation.


Subject(s)
Apoptosis , Microtubules/physiology , Actomyosin/chemistry , Adenosine Triphosphate/chemistry , Caspases/metabolism , Cell Line, Tumor , Cell Membrane/physiology , Cell Membrane Permeability , Cytoskeleton/physiology , Homeostasis , Humans , Inflammation , Intermediate Filaments/chemistry , Macrophages/cytology , Polymers/chemistry
14.
Sci Rep ; 5: 10903, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26045184

ABSTRACT

Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal ß-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient ß-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N'-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD.


Subject(s)
Enzyme Inhibitors/pharmacology , Gaucher Disease/metabolism , Glucosylceramidase/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Ubiquinone/analogs & derivatives , Autophagy/drug effects , Autophagy/genetics , Biomarkers , Enzyme Activation , Fibroblasts/drug effects , Fibroblasts/metabolism , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Gene Expression , Glucosylceramidase/genetics , Humans , Mutation , Phagosomes/metabolism , Reactive Oxygen Species/metabolism , Ubiquinone/pharmacology
15.
J Investig Med High Impact Case Rep ; 3(3): 2324709615607908, 2015.
Article in English | MEDLINE | ID: mdl-26904705

ABSTRACT

Introduction. Symptoms of mitochondrial diseases and chronic fatigue syndrome (CFS) frequently overlap and can easily be mistaken. Methods. We report the case of a patient diagnosed with CFS and during follow-up was finally diagnosed with mitochondrial myopathy by histochemical study of muscle biopsy, spectrophotometric analysis of the complexes of the mitochondrial respiratory chain, and genetic studies. Results. The results revealed 3% fiber-ragged blue and a severe deficiency of complexes I and IV and several mtDNA variants. Mother, sisters, and nephews showed similar symptoms, which strongly suggests a possible maternal inheritance. The patient and his family responded to treatment with high doses of riboflavin and thiamine with a remarkable and sustained fatigue and muscle symptoms improvement. Conclusions. This case illustrates that initial symptoms of mitochondrial disease in adults can easily be mistaken with CFS, and in these patients a regular reassessment and monitoring of symptoms is recommended to reconfirm or change the diagnosis.

16.
Redox Biol ; 5: 416, 2015 08.
Article in English | MEDLINE | ID: mdl-28162276

ABSTRACT

Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. We were able by using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant) to stabilize H460 apoptotic cells in cell cultures for at least 72hours preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cells characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels, plasma membrane potential, PS externalization and ability of being phagocytosed. Stabilized apoptotic cells can be considered as dying cells in which the cellular cortex and plasma membrane are maintained intact or alive. In a metaphorical sense, we can consider them as "living dead" or "zombie cells". Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.


Subject(s)
Apoptosis , Cell Membrane/metabolism , Membrane Potentials , Microtubules/metabolism , Animals , Cell Line , Cell Membrane/genetics , Humans , Microtubules/genetics
17.
Apoptosis ; 19(9): 1364-77, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25027509

ABSTRACT

Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.


Subject(s)
Apoptosis , Cold Temperature , Hot Temperature , Microtubules/ultrastructure , Antineoplastic Agents, Phytogenic/pharmacology , Calcium/metabolism , Camptothecin/pharmacology , Caspases/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Humans , Macrophages/metabolism , Membrane Proteins/metabolism , Microtubules/drug effects , Necrosis , Oligopeptides/pharmacology , Paclitaxel/pharmacology , Phosphatidylserines/metabolism
18.
Front Biosci (Landmark Ed) ; 19(4): 619-33, 2014 01 01.
Article in English | MEDLINE | ID: mdl-24389208

ABSTRACT

Coenzyme Q10 (CoQ10) or ubiquinone was known for its key role in mitochondrial bioenergetics as electron and proton carrier; later studies demonstrated its presence in other cellular membranes and in blood plasma, and extensively investigated its antioxidant role. These two functions constitute the basis for supporting the clinical indication of CoQ10. Furthermore, recent data indicate that CoQ10 affects expression of genes involved in human cell signalling, metabolism and transport and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, ageing-related oxidative stress and carcinogenesis processes, and also a secondary effect of statin treatment. Many neurodegenerative disorders, diabetes, cancer, fibromyalgia, muscular and cardiovascular diseases have been associated with low CoQ10 levels. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral CoQ10 treatment is a frequent mitochondrial energizer and antioxidant strategy in many diseases that may provide a significant symptomatic benefit.


Subject(s)
Ubiquinone/analogs & derivatives , Disease/classification , Humans , Therapeutics , Ubiquinone/pharmacokinetics , Ubiquinone/pharmacology , Ubiquinone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...