Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5625, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987237

ABSTRACT

Competence for natural transformation is a central driver of genetic diversity in bacteria. In the human pathogen Streptococcus pneumoniae, competence exhibits a populational character mediated by the stress-induced ComABCDE quorum-sensing (QS) system. Here, we explore how this cell-to-cell communication mechanism proceeds and the functional properties acquired by competent cells grown under lethal stress. We show that populational competence development depends on self-induced cells stochastically emerging in response to stresses, including antibiotics. Competence then propagates through the population from a low threshold density of self-induced cells, defining a biphasic Self-Induction and Propagation (SI&P) QS mechanism. We also reveal that a competent population displays either increased sensitivity or improved tolerance to lethal doses of antibiotics, dependent in the latter case on the competence-induced ComM division inhibitor. Remarkably, these surviving competent cells also display an altered transformation potential. Thus, the unveiled SI&P QS mechanism shapes pneumococcal competence as a health sensor of the clonal population, promoting a bet-hedging strategy that both responds to and drives cells towards heterogeneity.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Quorum Sensing , Streptococcus pneumoniae , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/physiology , Anti-Bacterial Agents/pharmacology , Quorum Sensing/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Gene Expression Regulation, Bacterial/drug effects , Transformation, Bacterial
2.
Proc Natl Acad Sci U S A ; 120(8): e2213867120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36795748

ABSTRACT

Homologous recombination (HR) is a crucial mechanism of DNA strand exchange that promotes genetic repair and diversity in all kingdoms of life. Bacterial HR is driven by the universal recombinase RecA, assisted in the early steps by dedicated mediators that promote its polymerization on single-stranded DNA (ssDNA). In bacteria, natural transformation is a prominent HR-driven mechanism of horizontal gene transfer specifically dependent on the conserved DprA recombination mediator. Transformation involves internalization of exogenous DNA as ssDNA, followed by its integration into the chromosome by RecA-directed HR. How DprA-mediated RecA filamentation on transforming ssDNA is spatiotemporally coordinated with other cellular processes remains unknown. Here, we tracked the localization of fluorescent fusions to DprA and RecA in Streptococcus pneumoniae and revealed that both accumulate in an interdependent manner with internalized ssDNA at replication forks. In addition, dynamic RecA filaments were observed emanating from replication forks, even with heterologous transforming DNA, which probably represent chromosomal homology search. In conclusion, this unveiled interaction between HR transformation and replication machineries highlights an unprecedented role for replisomes as landing pads for chromosomal access of tDNA, which would define a pivotal early HR step for its chromosomal integration.


Subject(s)
Rec A Recombinases , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromosomes/metabolism , DNA/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism
3.
Elife ; 92020 11 02.
Article in English | MEDLINE | ID: mdl-33135635

ABSTRACT

Competence is a widespread bacterial differentiation program driving antibiotic resistance and virulence in many pathogens. Here, we studied the spatiotemporal localization dynamics of the key regulators that master the two intertwined and transient transcription waves defining competence in Streptococcus pneumoniae. The first wave relies on the stress-inducible phosphorelay between ComD and ComE proteins, and the second on the alternative sigma factor σX, which directs the expression of the DprA protein that turns off competence through interaction with phosphorylated ComE. We found that ComD, σX and DprA stably co-localize at one pole in competent cells, with σX physically conveying DprA next to ComD. Through this polar DprA targeting function, σX mediates the timely shut-off of the pneumococcal competence cycle, preserving cell fitness. Altogether, this study unveils an unprecedented role for a transcription σ factor in spatially coordinating the negative feedback loop of its own genetic circuit.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Sigma Factor/metabolism , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Fluorescence , Sigma Factor/genetics , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/genetics , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...