Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902214

ABSTRACT

Acral melanoma (AM) is the most common melanoma in non-Caucasian populations, yet it remains largely understudied. As AM lacks the UV-radiation mutational signatures that characterize other cutaneous melanomas, it is considered devoid of immunogenicity and is rarely included in clinical trials assessing novel immunotherapeutic regimes aiming to recover the antitumor function of immune cells. We studied a Mexican cohort of melanoma patients from the Mexican Institute of Social Security (IMSS) (n = 38) and found an overrepresentation of AM (73.9%). We developed a multiparametric immunofluorescence technique coupled with a machine learning image analysis to evaluate the presence of conventional type 1 dendritic cells (cDC1) and CD8 T cells in the stroma of melanoma, two of the most relevant immune cell types for antitumor responses. We observed that both cell types infiltrate AM at similar and even higher levels than other cutaneous melanomas. Both melanoma types harbored programmed cell death protein 1 (PD-1+) CD8 T cells and PD-1 ligand (PD-L1+) cDC1s. Despite this, CD8 T cells appeared to preserve their effector function and expanding capacity as they expressed interferon-γ (IFN-γ) and KI-67. The density of cDC1s and CD8 T cells significantly decreased in advanced stage III and IV melanomas, supporting these cells' capacity to control tumor progression. These data also argue that AM could respond to anti-PD-1-PD-L1 immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Lymphocytes, Tumor-Infiltrating , Melanoma , Skin Neoplasms , Skin , Humans , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Melanoma/immunology , Melanoma/pathology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Dendritic Cells/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Ultraviolet Rays , Radiation Exposure , Skin/radiation effects , Melanoma, Cutaneous Malignant
2.
Arch Med Res ; 53(8): 794-806, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36460547

ABSTRACT

Melanoma is the deadliest form of skin cancer. It is classified as cutaneous and non-cutaneous, with the former characterized by developing in sun-exposed areas of the skin, UV-light radiation being its most important risk factor and ordinarily affecting fair skin populations. In recent years, the incidence of melanoma has been increasing in populations with darker complexion, for example, Hispanics, in which acral melanoma is highly prevalent. The WHO estimates that the incidence and mortality of melanoma will increase by more than 60% by 2040, particularly in low/medium income countries. Acral melanoma appears in the palms, soles and nails, and because of these occult locations, it is often considered different from other cutaneous melanomas even though it also originates in the skin. Acral melanoma is very rare in Caucasian populations and is often not included from genetic analysis and clinical trials. In this review, we present the worldwide epidemiology of acral melanoma; we summarize its genetic characterization and point out important signaling pathways for targeted therapy. We also discuss how genetic analyses have shown that acral melanoma carries a sufficient mutational load and neoantigen formation to be targeted by the immune system, arguing for a potential benefit with novel immunotherapeutic strategies, alone or combined with targeted therapy. This is important because chemotherapy remains the first-line treatment in non-developed nations despite a disheartening response. In summary, the increased incidence and mortality of acral melanoma in low/medium income countries calls for increasing our knowledge about its nature and therapeutic options and leveling off the asymmetric research conducted primarily on Caucasian populations.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/therapy , Skin Neoplasms/therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Immunotherapy , Ultraviolet Rays , Melanoma, Cutaneous Malignant
3.
J Oncol ; 2022: 9775736, 2022.
Article in English | MEDLINE | ID: mdl-36276271

ABSTRACT

Melanoma is the deadliest form of skin cancer. Due to its high mutation rates, melanoma is a convenient model to study antitumor immune responses. Dendritic cells (DCs) play a key role in activating cytotoxic CD8+ T lymphocytes and directing them to kill tumor cells. Although there is evidence that DCs infiltrate melanomas, information about the profile of these cells, their activity states, and potential antitumor function remains unclear, particularly for conventional DCs type 1 (cDC1). Approaches to profiling tumor-infiltrating DCs are hindered by their diversity and the high number of signals that can affect their state of activation. Multiplexed immunofluorescence (mIF) allows the simultaneous analysis of multiple markers, but image-based analysis is time-consuming and often inconsistent among analysts. In this work, we evaluated several machine learning (ML) algorithms and established a workflow of nine-parameter image analysis that allowed us to study cDC1s in a reproducible and accessible manner. Using this workflow, we compared melanoma samples between disease-free and metastatic patients at diagnosis. We observed that cDC1s are more abundant in the tumor infiltrate of the former. Furthermore, cDC1s in disease-free patients exhibit an expression profile more congruent with an activator function: CD40highPD-L1low CD86+IL-12+. Although disease-free patients were also enriched with CD40-PD-L1+ cDC1s, these cells were also more compatible with an activator phenotype. The opposite was true for metastatic patients at diagnosis who were enriched for cDC1s with a more tolerogenic phenotype (CD40lowPD-L1highCD86-IL-12-IDO+). ML-based workflows like the one developed here can be used to analyze complex phenotypes of other immune cells and can be brought to laboratories with standard expertise and computer capacity.

4.
Front Immunol ; 11: 583382, 2020.
Article in English | MEDLINE | ID: mdl-33240271

ABSTRACT

Immunotherapy has improved the clinical response in melanoma patients, although a relevant percentage of patients still cannot be salvaged. The search for the immune populations that provide the best tumor control and that can be coaxed by immunotherapy strategies is a hot topic in cancer research nowadays. Tumor-infiltrating TCF-1+ progenitor exhausted CD8+ T cells seem to grant the best melanoma prognosis and also efficiently respond to anti-PD-1 immunotherapy, giving rise to a TIM-3+ terminally exhausted population with heightened effector activity. We tested Porins from Salmonella Typhi as a pathogen associated molecular pattern adjuvant of natural or model antigen in prophylactic and therapeutic immunization approaches against murine melanoma. Porins induced protection against melanomas, even upon re-challenging of tumor-free mice. Porins efficiently expanded IFN-γ-producing CD8+ T cells and induced central and effector memory in lymph nodes and tissue-resident (Trm) T cells in the skin and tumors. Porins induced TCF-1+ PD-1+ CD8+ Trm T cells in the tumor stroma and the presence of this population correlated with melanoma growth protection in mice. Porins immunization also cooperated with anti-PD-1 immunotherapy to hamper melanoma growth. Importantly, the potentially protective Trm populations induced by Porins in the murine model were also observed in melanoma patients in which their presence also correlated with disease control. Our data support the use of cancer vaccination to sculpt the tumor stroma with efficient and lasting Trm T cells with effector activities, highlighting the use of Porins as an adjuvant. Furthermore, our data place CD8+ Trm T cells with a progenitor exhausted phenotype as an important population for melanoma control, either independently or in cooperation with anti-PD-1 immunotherapy.


Subject(s)
Adjuvants, Immunologic/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Melanoma/immunology , Porins/immunology , Animals , Bacterial Proteins/immunology , Bacterial Proteins/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunization , Immunologic Memory/drug effects , Immunologic Memory/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Porins/pharmacology , Salmonella typhi
5.
Bol Med Hosp Infant Mex ; 77(5): 252-261, 2020.
Article in English | MEDLINE | ID: mdl-33064679

ABSTRACT

Since the emergence of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China at the end of 2019, when its characteristics were practically unknown, one aspect was evident: its high contagion rate. This high infection rate resulted in the spread of the virus in China, Europe, and, eventually, the rest of the world, including Mexico. At present, around 9 million people are infected, and around 470,000 have died worldwide. In this context, the need to generate protective immunity, and especially the generation of a vaccine that can protect the world population against infection in the shortest possible time, is a challenge that is being addressed in different countries using different strategies in multiple clinical trials. This opinion article will present the evidence of the induction of immune response in some of the viruses of the coronavirus family before COVID-19, such as SARS-CoV and MERS-CoV (Middle East respiratory syndrome coronavirus). The information collected about the induction of an immune response by SARS-CoV-2 will be presented, as well as a description of the vaccine candidates reported to date in the various ongoing clinical trials. Finally, an opinion based on the evidence presented will be issued on the potential success of developing vaccine prototypes.


Desde el surgimiento del nuevo coronavirus SARS-CoV-2 (coronavirus tipo 2 del síndrome respiratorio agudo severo) en China a finales del año 2019, cuando todavía era desconocido prácticamente en todos los aspectos, una característica era evidente: el alto índice de contagio entre la población. Esto resultó en la expansión del virus en China, Europa y, finalmente, en el resto del mundo, incluyendo México. Actualmente, alrededor de 9 millones de personas están infectadas, y han muerto cerca de 500,000 en todo el mundo. En este contexto, la necesidad de generar inmunidad protectora y, sobre todo, el desarrollo de una vacuna que pueda proteger a la población mundial contra la infección en el menor tiempo posible, es un reto que se está abordando en distintos países utilizando diversas estrategias en múltiples ensayos clínicos. En este artículo de opinión se presentan las evidencias de la inducción de respuesta inmunitaria con algunos de los virus de la familia de coronavirus previos al SARS-CoV-2, como el SARS-CoV (coronavirus del síndrome respiratorio agudo severo) y el MERS-CoV (síndrome respiratorio por coronavirus de Oriente Medio). Además, se presenta lo reportado hasta el momento acerca de la inducción de respuesta inmunitaria por el SARS-CoV-2, así como una descripción de los candidatos a vacunas informados hasta el momento en los distintos ensayos clínicos en curso. Finalmente se emite una opinión, basada en las evidencias presentadas, acerca del éxito potencial de los prototipos de vacunas en desarrollo.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Animals , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...