Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunobiology ; 215(5): 341-7, 2010 May.
Article in English | MEDLINE | ID: mdl-19656587

ABSTRACT

The clearance of apoptotic cells by phagocytes is a fundamental process during tissue remodeling and resolution of inflammation. In turn, the phagocytosis of apoptotic cells generates signals that suppress pro-inflammatory activation of macrophages. These events occur during the resolution phase of inflammation and therefore the malfunctioning of this process may lead to inflammation-related tissue damage. Here, we demonstrate that the calcium-binding protein S100A9, normally abundant in the cytoplasm of neutrophils and also released by apoptotic neutrophils, is involved in the suppression of macrophages after the uptake of apoptotic neutrophils. Both, spontaneous and induced production of inflammatory species (nitric oxide, hydrogen peroxide and TNF-alpha) as well as the phagocytic activity were inhibited when macrophages were in presence of apoptotic neutrophils, conditioned medium from neutrophil cultures or a peptide corresponding to the C-terminal region of S100A9 protein. On the other hand, macrophages kept in the conditioned medium of neutrophils that was previously depleted of S100A9 were shown to resume the activated status. Finally, we demonstrate that the calcium-binding property of S100A9 might play a role in the suppression process, since the stimulation of intracellular calcium release with ionomycin significantly reversed the effects of the uptake of apoptotic neutrophils in macrophages. In conclusion, we propose that S100A9 is a novel component of the regulatory mechanisms of inflammation, acting side-by-side with other suppressor factors generated upon ingestion of apoptotic cells.


Subject(s)
Calgranulin B/immunology , Macrophages, Peritoneal/immunology , Neutrophils/immunology , Phagocytosis , Animals , Apoptosis/immunology , Cells, Cultured , Coculture Techniques , Down-Regulation , Inflammation/immunology , Mice
2.
Lupus ; 16(12): 947-54, 2007.
Article in English | MEDLINE | ID: mdl-18042588

ABSTRACT

The New Zealand Black x New Zealand White F1 [(NZB/NZW) F1] mouse develops an autoimmune condition resembling aspects of human systemic lupus erythematosus (SLE). We investigated the effects of a novel prophylactic thoraco-abdominal gamma irradiation protocol on the onset and evolution of lupus in these animals. Survival of irradiated mice was higher when compared with nonirradiated mice. Kidney lesions were milder and autoantibody levels were lower in irradiated mice. To identify possible mechanisms involved in the radiation-induced improvement of disease, distinct components of humoral and cellular immune responses were evaluated. Because B-1 cells are known to be involved in various autoimmune diseases, we investigated the participation of these cells in SLE progression. Unexpectedly, B-1 cells were not depleted in (NZB/NZW) F1, even after several rounds of irradiation. No alterations were found in viability and physiology of B-1 cells in SLE animals with the exception of constitutive overexpression of the anti-apoptotic molecule Bcl-2, which may account for the observed radioresistance. Thus, a role for B-1 cells in murine SLE cannot be excluded, since the irradiation protocol did not effectively eliminate these cells. Additionally, we demonstrate a marked delay in the ability of splenocytes to repopulate the spleen after irradiation in (NZB/NZW) F1, in contrast to leucocytes in other cellular compartments. The implications of these findings for the fate of SLE in this model are discussed.


Subject(s)
B-Lymphocyte Subsets/radiation effects , Gamma Rays/therapeutic use , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/radiotherapy , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred NZB , Monocytes/radiation effects , Neutrophils/radiation effects , Spleen/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...