Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nanoscale Adv ; 5(21): 5766-5773, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881714

ABSTRACT

Fluorescent core-shell silica nanoparticles are largely employed in nanomedicine and life science thanks to the many advantages they offer. Among these, the enhancement of the stability of the fluorescent signal upon fluorophore encapsulation into the silica matrix and the possibility to combine in a single vehicle multiple functionalities, physically separated in different compartments. In this work, we present a new approach to the Stöber method as a two-cycle protocol for the tailored synthesis of dual-color fluorescent core-shell silicon dioxide nanoparticles (SiO2 NPs) using two commercial dyes as model. To facilitate the colloidal stability, the nanoparticle surface was functionalized with biotin by two approaches. The biotinylated nanosystems were characterized by several analytical and advanced microscopy techniques including Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), UV-vis, transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Moreover, advanced super-resolution based on structured illumination was used for the imaging of the double-fluorescent NPs, both on a substrate and in the cellular microenvironment, at nanometric resolution 100 nm, in view of their versatile potential employment in fluorescence optical nanoscopy as nanoscale calibration tools as well as in biomedical applications as biocompatible nanosystems for intracellular biosensing with high flexibility of use, being these nanoplatforms adaptable to the encapsulation of any couple of dyes with the desired function.

2.
Hortic Res ; 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35039824

ABSTRACT

Over the past two centuries, introgression through repeated backcrossing has introduced disease resistance from wild grape species into the domesticated lineage Vitis vinifera subsp. sativa. Introgression lines are being cultivated over increasing vineyard surface areas, as their wines now rival in quality those obtained from preexisting varieties. There is, however, a lot of debate about whether and how wine laws defining commercial product categories, which are based on the classification of V. vinifera and interspecific hybrid grapes, should be revised to accommodate novel varieties that do not fit either category. Here, we developed a method of multilocus genotype analysis using short-read resequencing to identify haplotypic blocks of wild ancestry in introgression lines and quantify the physical length of chromosome segments free-of-introgression or with monoallelic and biallelic introgression. We used this genomic data to characterize species, hybrids and introgression lines and show that newly released resistant varieties contain 76.5-94.8% of V. vinifera DNA. We found that varietal wine ratings are not always commensurate with the percentage of V. vinifera ancestry and linkage drag of wild alleles around known resistance genes persists over at least 7.1-11.5 Mb, slowing down the recovery of the recurrent parental genome. This method also allowed us to identify the donor species of known resistance haplotypes, define the ancestry of wild genetic background in introgression lines with complex pedigrees, validate the ancestry of the historic varieties Concord and Norton, and unravel sample curation errors in public databases.

3.
J Virol Methods ; 300: 114383, 2022 02.
Article in English | MEDLINE | ID: mdl-34843827

ABSTRACT

Virus detection is a crucial step for the implementation of clean stock programs that preserve healthy crop species. Viral infections in grapevine, a vegetatively propagated perennial crop, cannot be eradicated from the vineyards by the application of agrochemicals and must be curtailed at the stage of nursery production during the propagation of planting material. Viral detection is routinely performed using enzyme-linked immunosorbent assays (ELISA) or Reverse Transcription-quantitative Polymerase Chain Reactions (RT-qPCR). High throughput sequencing (HTS) approaches have the potential to detect all viral pathogens in a plant specimen. However, to date, no published HTS-based study has used threshold selection based on ROC curves for discriminating positive from negative samples. To fill this gap, we assessed the specificity and sensitivity of different sequencing and bioinformatics approaches for nine common viruses, which were tested in the same specimens using ELISA and/or RT-qPCR. The normalized detection thresholds giving the best results were 19.28 Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for alignment-based total RNA-Seq approaches, 386 Reads Per Million mapped reads (RPM) for metagenomics-based total RNA-Seq, 1572 FPKM for alignment-based small RNA-Seq analysis and 0.97 % of contigs for de novo analysis of small RNA-Seq data. Validation of the proposed thresholds using independent specimens collected over time from the same stocks and other specimens collected from nearby stocks that had derived from the same propagating material showed that HTS approaches are accurate, with RNA-Seq approaches showing better performance than small RNA-Seq.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , High-Throughput Nucleotide Sequencing/methods , RNA-Seq , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
4.
J Cell Sci ; 134(3)2021 02 04.
Article in English | MEDLINE | ID: mdl-33443102

ABSTRACT

KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.


Subject(s)
Active Transport, Cell Nucleus , KRIT1 Protein/metabolism , Protein Kinase C-alpha , HeLa Cells , Humans , Phosphorylation , Protein Kinase C-alpha/genetics , Tetradecanoylphorbol Acetate
5.
Expert Opin Drug Deliv ; 18(7): 849-876, 2021 07.
Article in English | MEDLINE | ID: mdl-33406376

ABSTRACT

Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.


Subject(s)
Cerebrovascular Disorders , Hemangioma, Cavernous, Central Nervous System , Cerebrovascular Disorders/diagnosis , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/therapy , Hemangioma, Cavernous, Central Nervous System/diagnosis , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/therapy , Humans , Inflammation , Mutation , Nanomedicine
6.
Nanomaterials (Basel) ; 10(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947820

ABSTRACT

A method for the aqueous synthesis of stable and biocompatible citrate-coated palladium nanoparticles (PdNPs) in the size range comparable to natural enzymes (4-8 nm) has been developed. The toxicological profile of PdNPs was assessed by different assays on several cell lines demonstrating their safety in vitro also at high particle concentrations. To elucidate their cellular fate upon uptake, the localization of PdNPs was analyzed by Transmission Electron Microscopy (TEM). Moreover, crucial information about their intracellular stability and oxidation state was obtained by Sputtering-Enabled Intracellular X-ray Photoelectron Spectroscopy (SEI-XPS). TEM/XPS results showed significant stability of PdNPs in the cellular environment, an important feature for their biocompatibility and potential for biomedical applications. On the catalytic side, these PdNPs exhibited strong and broad antioxidant activities, being able to mimic the three main antioxidant cellular enzymes, i.e., peroxidase, catalase, and superoxide dismutase. Remarkably, using an experimental model of a human oxidative stress-related disease, we demonstrated the effectiveness of PdNPs as antioxidant nanozymes within the cellular environment, showing that they are able to completely re-establish the physiological Reactive Oxygen Species (ROS) levels in highly compromised intracellular redox conditions.

7.
Bioconjug Chem ; 31(1): 74-81, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31851492

ABSTRACT

Gold nanomaterials hold great potential for biomedical applications. While this field is evolving rapidly, little attention has been paid to precise nanoparticle design and functionalization. Here, we show that when using proteins as targeting moieties, it is fundamental to immobilize them directionally to preserve their biological activity. Using full-length leptin as a case study, we have developed two alternative conjugation strategies for protein immobilization based on either a site-selective or a nonselective derivatization approach. We show that only nanoparticles with leptin immobilized site-selectively fully retain the ability to interact with the cognate leptin receptor. These results demonstrate the importance of a specified molecular design when preparing nanoparticles labeled with proteins.


Subject(s)
Gold/chemistry , Immobilized Proteins/chemistry , Leptin/chemistry , Metal Nanoparticles/chemistry , Humans , Leptin/metabolism , MCF-7 Cells , Receptors, Leptin/metabolism
8.
ACS Omega ; 3(11): 15389-15398, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30556006

ABSTRACT

Platinum nanoparticles (PtNPs) are antioxidant enzyme-mimetic nanomaterials with significant potential for the treatment of complex diseases related to oxidative stress. Among such diseases, Cerebral Cavernous Malformation (CCM) is a major cerebrovascular disorder of genetic origin, which affects at least 0.5% of the general population. Accumulated evidence indicates that loss-of-function mutations of the three known CCM genes predispose endothelial cells to oxidative stress-mediated dysfunctions by affecting distinct redox-sensitive signaling pathways and mechanisms, including pro-oxidant and antioxidant pathways and autophagy. A multitargeted combinatorial therapy might thereby represent a promising strategy for the effective treatment of this disease. Herein, we developed a multifunctional nanocarrier by combining the radical scavenging activity of PtNPs with the autophagy-stimulating activity of rapamycin (Rapa). Our results show that the combinatorial targeting of redox signaling and autophagy dysfunctions is effective in rescuing major molecular and cellular hallmarks of CCM disease, suggesting its potential for the treatment of this and other oxidative stress-related diseases.

9.
Phytochem Anal ; 29(3): 233-241, 2018 May.
Article in English | MEDLINE | ID: mdl-29143440

ABSTRACT

INTRODUCTION: For the determination of harpagoside and the wide phenolic pattern in Harpagophytum procumbens root and its commercial food supplements, dispersive liquid-liquid microextraction (DLLME), ultrasound-assisted DLLME (UA-DLLME), and sugaring-out liquid-liquid extraction (SULLE) were tested and compared. OBJECTIVES: In order to optimise the extraction efficiency, DLLME and UA-DLLME were performed in different solvents (water and aqueous solutions of glucose, ß-cyclodextrin, (2-hydroxypropyl)-ß-cyclodextrin, sodium chloride, natural deep eutectic solvent, and ionic liquid). MATERIAL AND METHODS: The plant material was ground and sieved to obtain a uniform granulometry before extraction. Commercial food supplements, containing H. procumbens are commercially available in Italy. RESULTS: The most effective sodium chloride-aided-DLLME was then optimised and applied for analyses followed by HPLC-PDA. For comparison, microwave-assisted extraction was performed using the same solvents and the best results were obtained using 1% of ß-cyclodextrin or 15% of sodium chloride. CONCLUSION: All commercial samples respected the European Pharmacopoeia monograph for this plant material, showing a harpagoside content ≥ 1.2%. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Dietary Supplements/analysis , Glycosides/analysis , Harpagophytum/chemistry , Liquid Phase Microextraction/methods , Phenols/analysis , Plant Roots/chemistry , Pyrans/analysis , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Chromatography, High Pressure Liquid/methods , Glucose/chemistry , Italy , Limit of Detection , Microwaves , Sodium Chloride/chemistry , Solvents/chemistry , Water/chemistry
10.
J Enzyme Inhib Med Chem ; 32(1): 1-11, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28776447

ABSTRACT

This paper reports the MEPS-HPLC-DAD method for the simultaneous determination of 12 azole drugs (bifonazole, butoconazole, clotrimazole, econazole, itraconazole, ketoconazole, miconazole, posaconazole, ravuconazole, terconazole, tioconazole and voriconazole) administered to treat different systemic and topical fungal infections, in biological samples. Azole drugs separation was performed in 36 min. The analytical method was validated in the ranges as follows: 0.02-5 µg mL-1 for ravuconazole; 0.2-5 µg mL-1 for terconazole; 0.05-5 µg mL-1 for the other compounds. Human plasma and urine were used as biological samples during the analysis, while benzyl-4-hydroxybenzoate was used as an internal standard. The precision (RSD%) and trueness (Bias%) values fulfill with International Guidelines requirements. To the best of our knowledge, this is the first HPLC-DAD procedure coupled to MEPS, which provides the simultaneous analysis of 12 azole drugs, available in the market, in human plasma and urine. Moreover, the method was successfully applied for the quantitative determination of two model drugs (itraconazole and miconazole) after oral administration in real samples.


Subject(s)
Imidazoles/analysis , Solid Phase Microextraction , Triazoles/analysis , Adsorption , Chromatography, High Pressure Liquid , Molecular Structure
11.
Chem Soc Rev ; 46(16): 4951-4975, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28696452

ABSTRACT

Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.


Subject(s)
Metal Nanoparticles/chemistry , Nanomedicine , Platinum/chemistry , Humans , Particle Size
12.
Front Pharmacol ; 8: 290, 2017.
Article in English | MEDLINE | ID: mdl-28588492

ABSTRACT

In this work, the biological and chemical fingerprints of three extracts (ethyl acetate, methanol, and water) from two Potentilla species (Potentilla reptans and P. speciosa) were investigated. Antioxidant, enzyme inhibitory, and cytotoxic activities were performed for the biological fingerprint. For the chemical characterization, total bioactive components, and individual phenolic components were determined using photometric and HPLC methods, respectively. The main identified phenolic compounds in these extracts were rutin and catechin. Methanol and water extracts contained the highest total phenolic and flavonoid content. The results of antioxidant assays showed that methanol and water extracts displayed higher antioxidant activity compared to the ethyl acetate extract. Generally, methanol and water extracts exhibited higher biological activities correlated with higher levels the bioactive components. For P. speciosa, the methanol extract exhibited the highest enzyme inhibitory activity (except BChE inhibitory activity). P. reptans exhibited also high antiproliferative activity against MCF-7 cells whilst P. speciosa had weak to moderate activity against both of A549 and MCF-7 cell lines. The results suggest that Potentilla species could be potential candidates for developing new phyto-pharmaceuticals and functional ingredients.

13.
J Enzyme Inhib Med Chem ; 32(1): 60-67, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27774819

ABSTRACT

The current study was carried out to evaluate multicomponent pattern, biological and enzymatic activities of seven Asphodeline taxa root extracts as useful ingredients, due to the fact that these plants are commonly used as traditional food supplements in Turkish regions. The extracts were characterized for free anthraquinones and phenolics to obtain a specific chemical fingerprint useful for quality control. These analyzes were coupled to biological and enzymatic activities in order to obtain comprehensive information of the natural product. Free anthraquinones and phenolics were determined using validated HPLC-PDA methods. Antioxidant properties were determined by different procedures including free radical scavenging, reducing power, phosphomolybdenum and metal chelating assays. Ames assay was performed to evaluate mutagenic/antimutagenic properties. Enzyme inhibitory activities were tested against cholinesterase, tyrosinase, α-amylase and α-glucosidase. From the herein reported results, Asphodeline could be valuable for the production of bioactive products or food supplements for cosmetic and pharmaceutical industries.


Subject(s)
Asparagales/chemistry , Asparagales/classification , Chromatography, High Pressure Liquid , alpha-Amylases/antagonists & inhibitors
14.
J Enzyme Inhib Med Chem ; 31(sup3): 110-116, 2016.
Article in English | MEDLINE | ID: mdl-27444953

ABSTRACT

We developed and validated an analytical method based on microextraction packed sorbent (MEPS) and high-performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector to simultaneously quantify multiple nonsteroidal anti-inflammatory drugs (NSAIDs) and fluoroquinolones (FLQs), which may provide as combination several adverse reactions in nephrology and neurology. The linearity range from LOQs (0.1 µg/mL) to 10 µg/mL, and LODs values were 0.03 µg/mL for both NSAIDs and FLQs. The validation was performed according to international guidelines and the accuracy was tested measuring the precision, intermediate precision and trueness. The drugs stability was tested under different storage conditions (+4 °C and -20 °C) and after three different cycles of freezing and thawing. The method can be a suitable tool to simultaneously detect a possible association of drugs in human biological samples and provide several potentialities for clinical applications, bioequivalence studies, pharmacodynamics and toxicodynamics of different pharmaceutical dosage forms showing NSAIDs and FLQs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/blood , Anti-Inflammatory Agents, Non-Steroidal/urine , Fluoroquinolones/blood , Fluoroquinolones/urine , Liquid Phase Microextraction , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Chromatography, High Pressure Liquid , Fluoroquinolones/administration & dosage , Healthy Volunteers , Humans , Molecular Structure
15.
Biochem J ; 473(16): 2519-30, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27287557

ABSTRACT

ATP synthase, canonically mitochondrially located, is reported to be ectopically expressed on the plasma membrane outer face of several cell types. We analysed, for the first time, the expression and catalytic activities of the ecto- and mitochondrial ATP synthase during liver regeneration. Liver regeneration was induced in rats by two-thirds partial hepatectomy. The protein level and the ATP synthase and/or hydrolase activities of the hepatocyte ecto- and mitochondrial ATP synthase were analysed on freshly isolated hepatocytes and mitochondria from control, sham-operated and partial hepatectomized rats. During the priming phase of liver regeneration, 3 h after partial hepatectomy, liver mitochondria showed a marked lowering of the ATP synthase protein level that was reflected in the impairment of both ATP synthesis and hydrolysis. The ecto-ATP synthase level, in 3 h partial hepatectomized hepatocytes, was decreased similarly to the level of the mitochondrial ATP synthase, associated with a lowering of the ecto-ATP hydrolase activity coupled to proton influx. Noteworthily, the ecto-ATP synthase activity coupled to proton efflux was completely inhibited in 3 h partial hepatectomized hepatocytes, even in the presence of a marked intracellular acidification that would sustain it as in control and sham-operated hepatocytes. At the end of the liver regeneration, 7 days after partial hepatectomy, the level and the catalytic activities of the ecto- and mitochondrial ATP synthase reached the control and sham-operated values. The specific modulation of hepatocyte ecto-ATP synthase catalytic activities during liver regeneration priming phase may modulate the extracellular ADP/ATP levels and/or proton influx/efflux trafficking, making hepatocyte ecto-ATP synthase a candidate for a novel player in the liver regeneration process.


Subject(s)
Adenosine Triphosphatases/metabolism , Liver Regeneration , Membrane Proteins/metabolism , Animals , Biocatalysis , Hepatectomy , Male , Mitochondria, Liver/enzymology , Mitochondrial Proton-Translocating ATPases/metabolism , Rats , Rats, Wistar
17.
J Enzyme Inhib Med Chem ; 31(sup1): 203-208, 2016.
Article in English | MEDLINE | ID: mdl-27143199

ABSTRACT

The multicomponent pattern and biological characterization of plant material are essential for pharmaceutical field, in the food supplements quality control procedures and to all plant-based products. These nutrients often show valuable effects related to their consumption due to the occurrence of secondary metabolites that show useful properties on health. In this framework, researches performed on this topic play a central role for human health and drug development process. The aim of this study was to compare phenolics and free anthraquinones multicomponent pattern of two wild Turkish species: Asphodeline anatolica and Potentilla speciosa using validated high-performance liquid chromatography-photogiode array (HPLC-PDA) assays, coupled to biological evaluation. Even if some variances related to biological and enzymatic inhibition activities can be ascribed to other phytochemicals, the reported data support traditional use of Asphodeline anatolica and Potentilla speciosa roots as valuable natural font for the development of novel natural-derived drug formulations and/or food supplements with health and nutritional benefits.


Subject(s)
Anthraquinones/pharmacology , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Liliaceae/chemistry , Phenols/pharmacology , Potentilla/chemistry , Anthraquinones/chemistry , Anthraquinones/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Cholinesterases/metabolism , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Phenols/chemistry , Phenols/isolation & purification , Structure-Activity Relationship , Turkey , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
18.
Nanoscale ; 8(6): 3739-52, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26815950

ABSTRACT

In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.


Subject(s)
Antioxidants , Hemangioma, Cavernous, Central Nervous System/drug therapy , Models, Biological , Nanoparticles/chemistry , Platinum , Reactive Oxygen Species/metabolism , Animals , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Caco-2 Cells , Endosomes/metabolism , HeLa Cells , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , Lysosomes/metabolism , MCF-7 Cells , Mice , Oxidative Stress , Platinum/chemistry , Platinum/pharmacokinetics , Platinum/pharmacology
19.
Sci Rep ; 5: 10531, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26013699

ABSTRACT

Cancer cell motility is one of the major events involved in metastatic process. Tumor cells that disseminate from a primary tumor can migrate into the vascular system and, being carried by the bloodstream, transmigrate across the endothelium, giving rise to a new tumor site. However, during the invasive process, tumor cells must pass through the extracellular matrix, whose structural and mechanical properties define the parameters of the migration process. Here, we propose 3D-complex cage-like microstructures, realized by two-photon (TP) direct laser writing (DLW), to analyze cell migration through pores significantly smaller than the cell nucleus. We found that the ability to traverse differently sized pores depends on the metastatic potential and on the invasiveness of the cell lines, allowing to establish a pore-area threshold value able to discriminate between non-tumorigenic and tumorigenic human breast cells.


Subject(s)
Microscopy, Confocal , Time-Lapse Imaging , Cell Line, Tumor , Cell Movement , Coculture Techniques , Humans , Nonmuscle Myosin Type IIA/metabolism
20.
Nanomedicine ; 11(3): 731-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25546848

ABSTRACT

Toxicity of silver nanoparticles (AgNPs) is supported by many observations in literature, but no mechanism details have been proved yet. Here we confirm and quantify the toxic potential of fully characterized AgNPs in HeLa and A549 cells. Notably, through a specific fluorescent probe, we demonstrate the intracellular release of Ag(+) ions in living cells after nanoparticle internalization, showing that in-situ particle degradation is promoted by the acidic lysosomal environment. The activation of metallothioneins in response to AgNPs and the possibility to reverse the main toxic pathway by Ag(+) chelating agents demonstrate a cause/effect relationship between ions and cell death. We propose that endocytosed AgNPs are degraded in the lysosomes and the release of Ag(+) ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect. These findings will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPs. From the clinical editor: The authors describe the toxic potential of silver nanoparticles (AgNP) in human cancer cell lines. Cell death following the application of AgNPs is dose-dependent, and it is mostly due to Ag+ ions. Further in vivo studies should be performed to gain a comprehensive picture of AgNP-toxicity in mammals.


Subject(s)
Cytosol/metabolism , Metal Nanoparticles/chemistry , Silver , Cations, Monovalent/pharmacokinetics , HeLa Cells , Humans , Lysosomes/metabolism , Silver/chemistry , Silver/pharmacokinetics , Silver/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...