Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36429935

ABSTRACT

Parkinson's disease (PD) is a progressive and neurodegenerative disorder defined by physical symptoms such as hand disability and postural instability. To counteract the detrimental effects of PD, physical activity programs showed improvements in overall aspects of physical functioning. Therefore, this protocol will aim to evaluate the effect a of postural and fine motor skills training program in older adults with PD. PD individuals, with mild to moderate stage PD, aged between 65 to 80 years, will be voluntary selected from the Nursing Home Residences and Rehabilitation Centers. Subsequently, they will be randomly assigned to intervention group (PD) to receive a combined training program (postural control and fine motor skills exercises) or to the Control group (CON) to receive a stretching program. Before (PRE) and after (POST) a 12-week program both groups will perform wobble board (WB) and grooved pegboard (GPT) tests. Different performances between groups will be expected: (1) no significant differences between PD and CON group for WB and GPT test values before the beginning of the training intervention (PRE); (2) significantly better WB and GPT test values in PD subjects after the training intervention (POST) when compared to the base values (PRE); and (3) no significant differences in WB and GPT test values in CON subjects after the training intervention (POST) when compared to the base values (PRE). The findings of the present study protocol could be used for future studies investigating clinical populations, such as PD, and the effects of different rehabilitative interventions aiming to improve postural control and fine motor skills performances assessed by WB and GPT tests.


Subject(s)
Parkinson Disease , Aged , Aged, 80 and over , Humans , Exercise , Exercise Therapy/methods , Motor Skills , Parkinson Disease/rehabilitation , Postural Balance , Randomized Controlled Trials as Topic
2.
Article in English | MEDLINE | ID: mdl-35410000

ABSTRACT

The role of physical activity in improving overall aspects of health regardless of age is well documented. Due to the coronavirus disease 2019 outbreak, preventive measures to limit airborne infection have been introduced, with people, especially older adults, advised to stay at home, thus increasing sedentary lifestyle and the risk of chronic diseases. As one of the few possible ways to stay active is home-based training, this review aims to provide evidence on alternative and feasible home-based activity programs as a tool to improve the fitness level in older adults, especially when preventive measures are needed to ensure isolation and limit interpersonal contacts. During quarantine, older adults, especially those with chronic diseases, are recommended to regularly exercise. Combined balance and muscle-strengthening training has proven to be particularly useful in limiting falls and mobility limitations. In addition, the use of virtual reality systems seems to be a potential strategy in remaining physically active, reducing physical inactivity time and significantly increasing the compliance of the older adults with physical activity programs. In conclusion, home-based programs induce improvements in physical functions in general and quality of life in older people with or without co-morbidities, and it can be considered in the future as one of the feasible and economic ways to increase physical well-being. This may be of unique importance in the setting of coronavirus disease 2019 enforced limitations in out-of-home activity.


Subject(s)
COVID-19 , Healthy Aging , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Exercise , Humans , Quality of Life , Quarantine
3.
Heliyon ; 6(9): e04937, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32984618

ABSTRACT

Computerized wobble boards (WB) are used to objectively assess balance in healthy and chronic ankle instability individuals. As in field setting health professionals might not own WB, objective evaluations are not always feasible. Therefore, the aim of this tudy was to investigate the contribution of sagittal plane joints angular-displacement and anthropometrics to predict equations to estimate WB performance by portable two-dimensional motion analysis (2D-MA) and cross-validate the developed equations in chronic ankle instability individuals. Thirty-nine healthy and twenty chronic ankle instability individuals stood on a WB in single stance position. The balance test consisted of three 30s trials per limb keeping the platform flat at 0°. Trials were video recorded, and three time-segments joints angular-displacement analyzed with 2D-MA: segment 1 (T1) including 30s data, segment 2 (T2) from second 0 to 10, segment 3 (T3) only the first 5s. Mixed regression for multilevel models was used to estimate WB performance for each time-segment and to examine limb differences for the predicted WB performance in chronic ankle instability sample. The accuracy of the equations to detect injured limbs was calculated via area under the curve for receiver operating characteristic. Ankle and knee angular-displacement parameters, body height and lower limb length were the major predictors of WB performance for the extrapolated models (p < 0.05; R2 = 0.83-0.56). The measured WB performance and T1 model showed significant (p < 0.05) performance differences between the injured and uninjured limbs. Receiver operating characteristic analysis showed an asymptotic significance of 0.03 for T1 equation with area under the curve of 0.70. The proposed models provide different methods to quantify the performance and accurately detect the injured limb in individuals with unilateral chronic ankle instability, when measuring balance via WB might not be feasible. App-makers may use the equations to provide an automatic all-in-one system to monitor the performance status and progress.

SELECTION OF CITATIONS
SEARCH DETAIL
...