Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 37(4): 687-699, 2022 04.
Article in English | MEDLINE | ID: mdl-35038187

ABSTRACT

Sclerostin is a negative regulator of the Wnt/ß-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension. The central players in this ectopic calcification process are the vascular smooth muscle cells that undergo dedifferentiation and thereby acquire characteristics of bonelike cells. Therefore, we hypothesize that depletion/deactivation of the Wnt/ß-catenin signaling inhibitor sclerostin may promote the development of ectopic calcifications through stimulation of bone-anabolic effects at the level of the arteries. We investigated the role of sclerostin (encoded by the Sost gene) during vascular calcification by using either Sost-/- mice or anti-sclerostin antibody. Sost-/- and wild-type (WT) mice (C57BL/6J background) were administered an adenine-containing diet to promote the development of CKD-induced vascular calcification. Calcifications developed more extensively in the cardiac vessels of adenine-exposed Sost-/- mice, compared to adenine-exposed WT mice. This could be concluded from the cardiac calcium content as well as from cardiac tissue sections on which calcifications were visualized histochemically. In a second experiment, DBA/2J mice were administered a warfarin-containing diet to induce vascular calcifications in the absence of CKD. Here, warfarin exposure led to significantly increased aortic and renal tissue calcium content. Calcifications, which were present in the aortic medial layer and renal vessels, were significantly more pronounced when warfarin treatment was combined with anti-sclerostin antibody treatment. This study demonstrates a protective effect of sclerostin during vascular calcification. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Adaptor Proteins, Signal Transducing/metabolism , Adenine/adverse effects , Aged , Animals , Calcium , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Warfarin/adverse effects , beta Catenin
2.
Toxins (Basel) ; 11(7)2019 07 21.
Article in English | MEDLINE | ID: mdl-31330917

ABSTRACT

Sclerostin is a well-known inhibitor of bone formation that acts on Wnt/ß-catenin signaling. This manuscript considers the possible role of sclerostin in vascular calcification, a process that shares many similarities with physiological bone formation. Rats were exposed to a warfarin-containing diet to induce vascular calcification. Vascular smooth muscle cell transdifferentiation, vascular calcification grade, and bone histomorphometry were examined. The presence and/or production of sclerostin was investigated in serum, aorta, and bone. Calcified human aortas were investigated to substantiate clinical relevance. Warfarin-exposed rats developed vascular calcifications in a time-dependent manner which went along with a progressive increase in serum sclerostin levels. Both osteogenic and adipogenic pathways were upregulated in calcifying vascular smooth muscle cells, as well as sclerostin mRNA and protein levels. Evidence for the local vascular action of sclerostin was found both in human and rat calcified aortas. Warfarin exposure led to a mildly decreased bone and mineralized areas. Osseous sclerostin production and bone turnover did not change significantly. This study showed local production of sclerostin in calcified vessels, which may indicate a negative feedback mechanism to prevent further calcification. Furthermore, increased levels of serum sclerostin, probably originating from excessive local production in calcified vessels, may contribute to the linkage between vascular pathology and impaired bone mineralization.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bone Morphogenetic Proteins/metabolism , Vascular Calcification/metabolism , Adipogenesis , Animals , Arteries/metabolism , Bone Morphogenetic Proteins/blood , Bone Morphogenetic Proteins/genetics , Bone and Bones/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Genetic Markers/genetics , Humans , Male , Myocytes, Smooth Muscle/drug effects , Osteogenesis , RNA, Messenger/metabolism , Rats, Wistar , Vascular Calcification/chemically induced , Warfarin/pharmacology
3.
J Am Soc Nephrol ; 30(5): 751-766, 2019 05.
Article in English | MEDLINE | ID: mdl-30940651

ABSTRACT

BACKGROUND: Protein-bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS) have been associated with cardiovascular morbidity and mortality in patients with CKD. However, direct evidence for a role of these toxins in CKD-related vascular calcification has not been reported. METHODS: To study early and late vascular alterations by toxin exposure, we exposed CKD rats to vehicle, IS (150 mg/kg per day), or PCS (150 mg/kg per day) for either 4 days (short-term exposure) or 7 weeks (long-term exposure). We also performed unbiased proteomic analyses of arterial samples coupled to functional bioinformatic annotation analyses to investigate molecular signaling events associated with toxin-mediated arterial calcification. RESULTS: Long-term exposure to either toxin at serum levels similar to those experienced by patients with CKD significantly increased calcification in the aorta and peripheral arteries. Our analyses revealed an association between calcification events, acute-phase response signaling, and coagulation and glucometabolic signaling pathways, whereas escape from toxin-induced calcification was linked with liver X receptors and farnesoid X/liver X receptor signaling pathways. Additional metabolic linkage to these pathways revealed that IS and PCS exposure engendered a prodiabetic state evidenced by elevated resting glucose and reduced GLUT1 expression. Short-term exposure to IS and PCS (before calcification had been established) showed activation of inflammation and coagulation signaling pathways in the aorta, demonstrating that these signaling pathways are causally implicated in toxin-induced arterial calcification. CONCLUSIONS: In CKD, both IS and PCS directly promote vascular calcification via activation of inflammation and coagulation pathways and were strongly associated with impaired glucose homeostasis.


Subject(s)
Carbamates/adverse effects , Glucose Intolerance/physiopathology , Indican/adverse effects , Polyesters/adverse effects , Renal Insufficiency, Chronic/pathology , Vascular Calcification/chemically induced , Animals , Biological Products/pharmacology , Biopsy, Needle , Carbamates/pharmacology , Disease Models, Animal , Immunohistochemistry , Indican/pharmacology , Male , Metformin/pharmacology , Polyesters/pharmacology , Random Allocation , Rats , Rats, Wistar , Sensitivity and Specificity , Vascular Calcification/drug therapy , Vascular Calcification/pathology
4.
Kidney Int ; 94(1): 102-113, 2018 07.
Article in English | MEDLINE | ID: mdl-29716795

ABSTRACT

Chronic kidney disease (CKD) causes dysregulation of mineral metabolism, vascular calcification and renal osteodystrophy, an entity called 'CKD-Mineral and Bone Disorder' (CKD-MBD). Here we determine whether metformin, an anti-diabetic drug, exerts favorable effects on progressive, severe CKD and concomitant mineral metabolism disturbances. Rats with CKD-MBD, induced by a 0.25% adenine diet for eight weeks, were treated with 200 mg/kg/day metformin or vehicle from one week after CKD induction onward. Severe, stable CKD along with marked hyperphosphatemia and hypocalcemia developed in these rats which led to arterial calcification and high bone turnover disease. Metformin protected from development toward severe CKD. Metformin-treated rats did not develop hyperphosphatemia or hypocalcemia and this prevented the development of vascular calcification and inhibited the progression toward high bone turnover disease. Kidneys of the metformin group showed significantly less cellular infiltration, fibrosis and inflammation. To study a possible direct effect of metformin on the development of vascular calcification, independent of its effect on renal function, metformin (200 mg/kg/day) or vehicle was dosed for ten weeks to rats with warfarin-induced vascular calcification. The drug did not reduce aorta or small vessel calcification in this animal model. Thus, metformin protected against the development of severe CKD and preserved calcium phosphorus homeostasis. As a result of its beneficial impact on renal function, associated comorbidities such as vascular calcification and high bone turnover disease were also prevented.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder/prevention & control , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Renal Insufficiency, Chronic/drug therapy , Vascular Calcification/prevention & control , Adenine/toxicity , Animals , Chronic Kidney Disease-Mineral and Bone Disorder/etiology , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Disease Models, Animal , Humans , Male , Rats , Rats, Wistar , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/metabolism , Severity of Illness Index , Treatment Outcome , Vascular Calcification/etiology , Vascular Calcification/metabolism , Warfarin/toxicity
5.
Bone ; 107: 115-123, 2018 02.
Article in English | MEDLINE | ID: mdl-29175269

ABSTRACT

Sclerostin is a soluble antagonist of canonical Wnt signaling and a strong inhibitor of bone formation. We present experimental data on the role of sclerostin in chronic kidney disease - bone mineral disorder (CKD-MBD). METHODS: We performed 5/6 nephrectomies in 36-week-old sclerostin-deficient (SOST-/-) B6-mice and in C57BL/6J wildtype (WT) mice. Animals received a high phosphate diet for 11weeks. The bones were analyzed by high-resolution micro-computed tomography (µCT) and quantitative bone histomorphometry. Aortic tissue was analyzed regarding the extent of vascular calcification. RESULTS: All nephrectomized mice had severe renal failure, and parathyroid hormone was highly increased compared to corresponding sham animals. All SOST-/- animals revealed the expected high bone mass phenotype. Overall, the bone compartment in WT and SOST-/- mice responded similarly to nephrectomy. In uremic WT animals, µCT data at both the distal femur and lumbar spine revealed significantly increased trabecular volume compared to non-uremic WTs. In SOST-/- mice, the differences between trabecular bone volume were less pronounced when comparing uremic with sham animals. Cortical thickness and cortical bone density at the distal femur decreased significantly and comparably in both genotypes after 5/6 nephrectomy compared to sham animals (cortical bone density -18% and cortical thickness -32%). Overall, 5/6 nephrectomy and concomitant hyperparathyroidism led to a genotype-independent loss of cortical bone volume and density. Overt vascular calcification was not detectable in either of the genotypes. CONCLUSION: Renal osteodystrophy changes were more pronounced in WT mice than in SOST-/- mice. The high bone mass phenotype of sclerostin deficiency was detectable also in the setting of chronic renal failure with severe secondary hyperparathyroidism.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Chronic Kidney Disease-Mineral and Bone Disorder/pathology , Glycoproteins/deficiency , Adaptor Proteins, Signal Transducing , Animals , Female , Intercellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
J Bone Miner Res ; 32(8): 1739-1749, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28477420

ABSTRACT

Sclerosteosis is a rare autosomal recessive bone disorder marked by hyperostosis of the skull and tubular bones. Initially, we and others reported that sclerosteosis was caused by loss-of-function mutations in SOST, encoding sclerostin. More recently, we identified disease-causing mutations in LRP4, a binding partner of sclerostin, in three sclerosteosis patients. Upon binding to sclerostin, LRP4 can inhibit the canonical WNT signaling that is known to be an important pathway in the regulation of bone formation. To further investigate the role of LRP4 in the bone formation process, we generated an Lrp4 mutated sclerosteosis mouse model by introducing the p.Arg1170Gln mutation in the mouse genome. Extensive analysis of the bone phenotype of the Lrp4R1170Q/R1170Q knock-in (KI) mouse showed the presence of increased trabecular and cortical bone mass as a consequence of increased bone formation by the osteoblasts. In addition, three-point bending analysis also showed that the increased bone mass results in increased bone strength. In contrast to the human sclerosteosis phenotype, we could not observe syndactyly in the forelimbs or hindlimbs of the Lrp4 KI animals. Finally, we could not detect any significant changes in the bone formation and resorption markers in the serum of the mutant mice. However, the serum sclerostin levels were strongly increased and the level of sclerostin in the tibia was decreased in Lrp4R1170Q/R1170Q mice, confirming the role of LRP4 as an anchor for sclerostin in bone. In conclusion, the Lrp4R1170Q/R1170Q mouse is a good model for the human sclerosteosis phenotype caused by mutations in LRP4 and can be used in the future for further investigation of the mechanism whereby LRP4 regulates bone formation. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Glycoproteins/metabolism , Homozygote , Hyperostosis , Mutation, Missense , Receptors, LDL , Syndactyly , Tibia/metabolism , Wnt Signaling Pathway , Adaptor Proteins, Signal Transducing , Amino Acid Substitution , Animals , Disease Models, Animal , Gene Knock-In Techniques , Glycoproteins/genetics , Humans , Hyperostosis/genetics , Hyperostosis/metabolism , Hyperostosis/pathology , Intercellular Signaling Peptides and Proteins , LDL-Receptor Related Proteins , Mice , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Syndactyly/genetics , Syndactyly/metabolism , Syndactyly/pathology , Tibia/pathology
7.
Calcif Tissue Int ; 99(5): 525-534, 2016 11.
Article in English | MEDLINE | ID: mdl-27461215

ABSTRACT

Vascular calcification significantly contributes to mortality in chronic kidney disease (CKD) patients. Sevelamer and pyrophosphate (PPi) have proven to be effective in preventing vascular calcification, the former by controlling intestinal phosphate absorption, the latter by directly interfering with the hydroxyapatite crystal formation. Since most patients present with established vascular calcification, it is important to evaluate whether these compounds may also halt or reverse the progression of preexisting vascular calcification. CKD and vascular calcification were induced in male Wistar rats by a 0.75 % adenine low protein diet for 4 weeks. Treatment with PPi (30 or 120 µmol/kg/day), sevelamer carbonate (1500 mg/kg/day) or vehicle was started at the time point at which vascular calcification was present and continued for 3 weeks. Hyperphosphatemia and vascular calcification developed prior to treatment. A significant progression of aortic calcification in vehicle-treated rats with CKD was observed over the final 3-week period. Sevelamer treatment significantly reduced further progression of aortic calcification as compared to the vehicle control. No such an effect was seen for either PPi dose. Sevelamer but not PPi treatment resulted in an increase in both osteoblast and osteoid perimeter. Our study shows that sevelamer was able to reduce the progression of moderate to severe preexisting aortic calcification in a CKD rat model. Higher doses of PPi may be required to induce a similar reduction of severe established arterial calcification in this CKD model.


Subject(s)
Diphosphates/pharmacology , Durapatite/antagonists & inhibitors , Renal Insufficiency, Chronic/complications , Sevelamer/pharmacology , Vascular Calcification/pathology , Animals , Aorta/pathology , Chelating Agents/pharmacology , Male , Rats , Rats, Wistar , Vascular Calcification/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...