Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257361

ABSTRACT

Aquatic environments face contamination by pharmaceuticals, prompting concerns due to their toxicity even at low concentrations. To combat this, we developed an ecologically sustainable biosurfactant derived from a microorganism and integrated it into bacterial cellulose (BC). This study aimed to evaluate BC's efficacy, with and without the biosurfactant, as a sorbent for paracetamol and 17α-ethinylestradiol (EE2) in water. We cultivated BC membranes using Gluconacetobacter xylinus ATCC 53582 and synthesized the biosurfactant through pre-inoculation of Bacillus subtilis in a synthetic medium. Subsequently, BC membranes were immersed in the biosurfactant solution for incorporation. Experiments were conducted using contaminated water, analyzing paracetamol concentrations via spectrophotometry and EE2 levels through high-performance liquid chromatography. Results indicated BC's superior adsorption for EE2 over paracetamol. Incorporating the biosurfactant reduced hormone adsorption but enhanced paracetamol sorption. Notably, original and freeze-dried BC exhibited better adsorption efficacy than biosurfactant-infused BC. In conclusion, BC showed promise in mitigating EE2 contamination, suggesting its potential for environmental remediation. Future research could focus on optimizing biosurfactant concentrations to enhance sorption capabilities without compromising BC's inherent effectiveness.


Subject(s)
Acetaminophen , Cellulose , Adsorption , Water , Pharmaceutical Preparations
2.
Curr Microbiol ; 80(3): 94, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36737549

ABSTRACT

Benzene, toluene, ethylbenzene and xylene (BTEX) are toxic petroleum hydrocarbons pollutants that can affect the central nervous system and even cause cancer. For that reason, studies regarding BTEX degradation are extremely important. Our study aimed evaluate the microorganism Bacillus subtilis as a tool for degrading petroleum hydrocarbons pollutants. Assays were run utilizing water or soil distinctly contaminated with gasoline and diesel oil, with and without B. subtilis. The ability of B. subtilis to degrade hydrophobic compounds was analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) and gas chromatography. The FTIR results indicated, for water assays, that B. subtilis utilized the gasoline and diesel oil to produce the biosurfactant, and, as a consequence, performed a biodegradation process. In the same way, for soil assay, B. subtilis biodegraded the diesel oil. The gas chromatography results indicated, for gasoline in soil assay, the B. subtilis removed BTEX. So, B. subtilis was capable of degrading BTEX, producing biosurfactant and it can also be used for other industrial applications. Bioremediation can be an efficient, economical, and versatile alternative for BTEX contamination.


Subject(s)
Environmental Pollutants , Petroleum , Soil Pollutants , Gasoline , Bacillus subtilis/metabolism , Soil/chemistry , Hydrocarbons/metabolism , Benzene/chemistry , Benzene/metabolism , Toluene/metabolism , Petroleum/metabolism , Xylenes/metabolism , Biodegradation, Environmental , Soil Pollutants/metabolism , Environmental Pollutants/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...