Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2308255, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757578

ABSTRACT

Metabolic alterations in cancers can be exploited for diagnostic, prognostic, and therapeutic purposes. This is exemplified by 18F-fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET), an imaging tool that relies on enhanced glucose uptake by tumors for diagnosis and staging. By performing transcriptomic analysis of breast cancer (BC) samples from patients stratified by FDG-PET, a 54-gene signature (PETsign) is identified that recapitulates FDG uptake. PETsign is independently prognostic of clinical outcome in luminal BCs, the most common and heterogeneous BC molecular subtype, which requires improved stratification criteria to guide therapeutic decision-making. The prognostic power of PETsign is stable across independent BC cohorts and disease stages including the earliest BC stage, arguing that PETsign is an ab initio metabolic signature. Transcriptomic and metabolomic analysis of BC cells reveals that PETsign predicts enhanced glycolytic dependence and reduced reliance on fatty acid oxidation. Moreover, coamplification of PETsign genes occurs frequently in BC arguing for their causal role in pathogenesis. CXCL8 and EGFR signaling pathways feature strongly in PETsign, and their activation in BC cells causes a shift toward a glycolytic phenotype. Thus, PETsign serves as a molecular surrogate for FDG-PET that could inform clinical management strategies for BC patients.

2.
Sci Rep ; 14(1): 8469, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605098

ABSTRACT

Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.


Subject(s)
Adipose Tissue , Neoplasms , Humans , Adipose Tissue/pathology , Adipocytes , Obesity/complications , Subcutaneous Fat/pathology , Neoplasms/pathology
3.
Cell Death Dis ; 15(1): 58, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233399

ABSTRACT

MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.


Subject(s)
Adenosine Triphosphate , Potassium Channels , Adenosine Triphosphate/metabolism , Potassium Channels/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mitochondria, Heart/metabolism
4.
Food Chem ; 439: 138124, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38064839

ABSTRACT

The evolving field of food technology is increasingly dedicated to developing functional foods. This study explored bioactive peptides from sunflower protein isolate (SPI), obtained from defatted flour, a by-product of the oil processing industry. SPI underwent simulated gastrointestinal digestion and the obtained peptide-enriched fraction (PEF) showed antioxidant properties in vivo, in zebrafish. Among the peptides present in PEF identified by mass spectrometry analysis, we selected those with antioxidant properties by in silico evaluation, considering their capability to interact with Keap1, key protein in the regulation of antioxidant response. The selected peptides were synthesized and evaluated in a cellular model. As a result, DVAMPVPK, VETGVIKPG, TTHTNPPPEAE, LTHPQHQQQGPSTG and PADVTPEEKPEV activated Keap1/Nrf2 pathway leading to Antioxidant Response Element-regulated enzymes upregulation. Since the crosstalk between Nrf2 and NF-κB is well known, the potential anti-inflammatory activity of the peptides was assessed and principally PADVTPEEKPEV showed good features both as antioxidant and anti-inflammatory molecule.


Subject(s)
Antioxidants , Helianthus , Animals , Antioxidants/chemistry , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Helianthus/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Zebrafish/metabolism , Peptides/pharmacology , Peptides/metabolism , Anti-Inflammatory Agents/pharmacology , Models, Animal , Computer Simulation
5.
Front Cell Dev Biol ; 11: 1071037, 2023.
Article in English | MEDLINE | ID: mdl-36994106

ABSTRACT

Rewiring of mitochondrial metabolism has been described in different cancers as a key step for their progression. Calcium (Ca2+) signaling regulates mitochondrial function and is known to be altered in several malignancies, including triple negative breast cancer (TNBC). However, whether and how the alterations in Ca2+ signaling contribute to metabolic changes in TNBC has not been elucidated. Here, we found that TNBC cells display frequent, spontaneous inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations, which are sensed by mitochondria. By combining genetic, pharmacologic and metabolomics approaches, we associated this pathway with the regulation of fatty acid (FA) metabolism. Moreover, we demonstrated that these signaling routes promote TNBC cell migration in vitro, suggesting they might be explored to identify potential therapeutic targets.

6.
Cell Calcium ; 112: 102720, 2023 06.
Article in English | MEDLINE | ID: mdl-37001308

ABSTRACT

Mitochondrial Ca2+ (mitCa2+) uptake controls both intraorganellar and cytosolic functions. Within the organelle, [Ca2+] increases regulate the activity of tricarboxylic acid (TCA) cycle enzymes, thus sustaining oxidative metabolism and ATP production. Reactive oxygen species (ROS) are also generated as side products of oxygen consumption. At the same time, mitochondria act as buffers of cytosolic Ca2+ (cytCa2+) increases, thus regulating Ca2+-dependent cellular processes. In pathological conditions, mitCa2+ overload triggers the opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic cofactors. MitCa2+ uptake occurs in response of local [Ca2+] increases in sites of proximity between the endoplasmic reticulum (ER) and the mitochondria and is mediated by the mitochondrial Ca2+ uniporter (MCU), a highly selective channel of the inner mitochondrial membrane (IMM). Both channel and regulatory subunits form the MCU complex (MCUC). Cryogenic electron microscopy (Cryo-EM) and crystal structures revealed the correct assembly of MCUC and the function of critical residues for the regulation of Ca2+ conductance.


Subject(s)
Calcium , Mitochondrial Membranes , Mitochondrial Membranes/metabolism , Calcium/metabolism , Mitochondria/metabolism , Calcium Channels/metabolism
7.
Biomedicines ; 11(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36831133

ABSTRACT

Neuroblastoma (NB) is the most common extracranial tumor of early childhood and accounts for 15% of all pediatric cancer mortalities. However, the precise pathways and genes underlying its progression are unknown. Therefore, we performed a differential gene expression analysis of neuroblastoma stage 1 and stage 4 + 4S to discover biological processes associated with NB progression. From this preliminary analysis, we found that NB samples (stage 4 + 4S) are characterized by altered expression of some proteins involved in mitochondria function and mitochondria-ER contact sites (MERCS). Although further analyses remain necessary, this review may provide new hints to better understand NB molecular etiopathogenesis, by suggesting that MERCS alterations could be involved in the progression of NB.

8.
Biomolecules ; 12(4)2022 04 12.
Article in English | MEDLINE | ID: mdl-35454156

ABSTRACT

Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria-ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs-cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton-MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.


Subject(s)
Endoplasmic Reticulum , Glioblastoma , Microtubules , Mitochondrial Membranes , Endoplasmic Reticulum/metabolism , Glioblastoma/metabolism , Humans , Microtubules/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism
9.
Int Rev Cell Mol Biol ; 362: 209-259, 2021.
Article in English | MEDLINE | ID: mdl-34253296

ABSTRACT

Skeletal muscle mitochondria are placed in close proximity of the sarcoplasmic reticulum (SR), the main intracellular Ca2+ store. During muscle activity, excitation of sarcolemma and of T-tubule triggers the release of Ca2+ from the SR initiating myofiber contraction. The rise in cytosolic Ca2+ determines the opening of the mitochondrial calcium uniporter (MCU), the highly selective channel of the inner mitochondrial membrane (IMM), causing a robust increase in mitochondrial Ca2+ uptake. The Ca2+-dependent activation of TCA cycle enzymes increases the synthesis of ATP required for SERCA activity. Thus, Ca2+ is transported back into the SR and cytosolic [Ca2+] returns to resting levels eventually leading to muscle relaxation. In recent years, thanks to the molecular identification of MCU complex components, the role of mitochondrial Ca2+ uptake in the pathophysiology of skeletal muscle has been uncovered. In this chapter, we will introduce the reader to a general overview of mitochondrial Ca2+ accumulation. We will tackle the key molecular players and the cellular and pathophysiological consequences of mitochondrial Ca2+ dyshomeostasis. In the second part of the chapter, we will discuss novel findings on the physiological role of mitochondrial Ca2+ uptake in skeletal muscle. Finally, we will examine the involvement of mitochondrial Ca2+ signaling in muscle diseases.


Subject(s)
Calcium/metabolism , Homeostasis , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Animals , Calcium Channels/metabolism , Humans , Reactive Oxygen Species/metabolism
10.
Cell Rep ; 35(12): 109275, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34161774

ABSTRACT

The mitochondrial calcium uniporter (MCU), the highly selective channel responsible for mitochondrial Ca2+ entry, plays important roles in physiology and pathology. However, only few pharmacological compounds directly and selectively modulate its activity. Here, we perform high-throughput screening on a US Food and Drug Administration (FDA)-approved drug library comprising 1,600 compounds to identify molecules modulating mitochondrial Ca2+ uptake. We find amorolfine and benzethonium to be positive and negative MCU modulators, respectively. In agreement with the positive effect of MCU in muscle trophism, amorolfine increases muscle size, and MCU silencing is sufficient to blunt amorolfine-induced hypertrophy. Conversely, in the triple-negative breast cancer cell line MDA-MB-231, benzethonium delays cell growth and migration in an MCU-dependent manner and protects from ceramide-induced apoptosis, in line with the role of mitochondrial Ca2+ uptake in cancer progression. Overall, we identify amorolfine and benzethonium as effective MCU-targeting drugs applicable to a wide array of experimental and disease conditions.


Subject(s)
Calcium Channels/metabolism , United States Food and Drug Administration , Animals , Apoptosis/drug effects , Benzethonium/pharmacology , Breast Neoplasms/pathology , Calcium/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytoprotection/drug effects , Duloxetine Hydrochloride/pharmacology , Energy Metabolism/drug effects , Female , High-Throughput Screening Assays , Homeostasis/drug effects , Humans , Hypertrophy , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Morpholines/pharmacology , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Oxygen Consumption/drug effects , Reactive Oxygen Species/metabolism , Reproducibility of Results , United States
11.
Cell Calcium ; 94: 102357, 2021 03.
Article in English | MEDLINE | ID: mdl-33550207

ABSTRACT

Mitochondrial activity warrants energy supply to oxidative myofibres to sustain endurance workload. The maintenance of mitochondrial homeostasis is ensured by the control of fission and fusion processes and by the mitophagic removal of aberrant organelles. Many diseases are due to or characterized by dysfunctional mitochondria, and altered mitochondrial dynamics or turnover trigger myopathy per se. In this review, we will tackle the role of mitochondrial dynamics, turnover and metabolism in skeletal muscle, both in health and disease.


Subject(s)
Health , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Animals , Humans , Mitochondrial Dynamics , Mitophagy , Muscular Diseases/pathology
12.
Cell Rep ; 30(7): 2321-2331.e6, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075766

ABSTRACT

Mitochondrial Ca2+ uptake depends on the mitochondrial calcium uniporter (MCU) complex, a highly selective channel of the inner mitochondrial membrane (IMM). Here, we screen a library of 44,000 non-proprietary compounds for their ability to modulate mitochondrial Ca2+ uptake. Two of them, named MCU-i4 and MCU-i11, are confirmed to reliably decrease mitochondrial Ca2+ influx. Docking simulations reveal that these molecules directly bind a specific cleft in MICU1, a key element of the MCU complex that controls channel gating. Accordingly, in MICU1-silenced or deleted cells, the inhibitory effect of the two compounds is lost. Moreover, MCU-i4 and MCU-i11 fail to inhibit mitochondrial Ca2+ uptake in cells expressing a MICU1 mutated in the critical amino acids that forge the predicted binding cleft. Finally, these compounds are tested ex vivo, revealing a primary role for mitochondrial Ca2+ uptake in muscle growth. Overall, MCU-i4 and MCU-i11 represent leading molecules for the development of MICU1-targeting drugs.


Subject(s)
Calcium-Binding Proteins/metabolism , Cation Transport Proteins/metabolism , High-Throughput Screening Assays/methods , Mitochondrial Membrane Transport Proteins/metabolism , HeLa Cells , Humans , Models, Molecular
13.
Int J Mol Sci ; 20(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627428

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons (MNs), probably by a combination of cell- and non-cell-autonomous processes. The past decades have brought many important insights into the role of astrocytes in nervous system function and disease, including the implication in ALS pathogenesis possibly through the impairment of Ca2+-dependent astrocyte-MN cross-talk. In this respect, it has been recently proposed that altered astrocytic store-operated Ca2+ entry (SOCE) may underlie aberrant gliotransmitter release and astrocyte-mediated neurotoxicity in ALS. These observations prompted us to a thorough investigation of SOCE in primary astrocytes from the spinal cord of the SOD1(G93A) ALS mouse model in comparison with the SOD1(WT)-expressing controls. To this purpose, we employed, for the first time in the field, genetically-encoded Ca2+ indicators, allowing the direct assessment of Ca2+ fluctuations in different cell domains. We found increased SOCE, associated with decreased expression of the sarco-endoplasmic reticulum Ca2+-ATPase and lower ER resting Ca2+ concentration in SOD1(G93A) astrocytes compared to control cells. Such findings add novel insights into the involvement of astrocytes in ALS MN damage.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , Mice, Transgenic , Spinal Cord/chemistry , Spinal Cord/metabolism
14.
Int J Mol Sci ; 20(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546771

ABSTRACT

The cellular prion protein (PrPC) is an ubiquitous cell surface protein mostly expressed in neurons, where it localizes to both pre- and post-synaptic membranes. PrPC aberrant conformers are the major components of mammalian prions, the infectious agents responsible for incurable neurodegenerative disorders. PrPC was also proposed to bind aggregated misfolded proteins/peptides, and to mediate their neurotoxic signal. In spite of long-lasting research, a general consensus on the precise pathophysiologic mechanisms of PrPC has not yet been reached. Here we review our recent data, obtained by comparing primary neurons from PrP-expressing and PrP-knockout mice, indicating a central role of PrPC in synaptic transmission and Ca2+ homeostasis. Indeed, by controlling gene expression and signaling cascades, PrPC is able to optimize glutamate secretion and regulate Ca2+ entry via store-operated channels and ionotropic glutamate receptors, thereby protecting neurons from threatening Ca2+ overloads and excitotoxicity. We will also illustrate and discuss past and unpublished results demonstrating that Aß oligomers perturb Ca2+ homeostasis and cause abnormal mitochondrial accumulation of reactive oxygen species by possibly affecting the PrP-dependent downregulation of Fyn kinase activity.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Calcium Signaling , Calcium/metabolism , PrPC Proteins/metabolism , Reactive Oxygen Species/metabolism , Alzheimer Disease/pathology , Animals , Glutamic Acid/metabolism , Humans , Mitochondria/metabolism , Mitochondria/pathology , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, Glutamate/metabolism
15.
Methods Mol Biol ; 1925: 1-14, 2019.
Article in English | MEDLINE | ID: mdl-30674012

ABSTRACT

Aequorin, a 22 kDa protein produced by the jellyfish Aequorea victoria, was the first probe used to measure Ca2+ concentrations ([Ca2+]) of specific intracellular organelles in intact cells. After the binding of Ca2+ to three high-affinity binding sites, an irreversible reaction occurs leading to the emission of photons that is proportional to [Ca2+]. While native aequorin is suitable for measuring cytosolic [Ca2+] after cell stimulation in a range from 0.5 to 10 µM, it cannot be used in organelles where [Ca2+] is much higher, such as in the lumen of endoplasmic/sarcoplasmic reticulum (ER/SR) and mitochondria. However, some modifications made on aequorin itself or on coelenterazine, its lipophilic prosthetic luminophore, and the addition of targeting sequences or the fusion with resident proteins allowed the specific organelle localization and the measurements of intra-organelle Ca2+ levels. In the last years, the development of multiwell plate readers has opened the possibility to perform aequorin-based high-throughput screenings and has overcome some limitation of the standard method. Here we present the procedure for expressing, targeting, and reconstituting aequorin in intact cells and for measuring Ca2+ in the bulk cytosol, mitochondria, and ER by a high-throughput screening system.


Subject(s)
Aequorin/chemistry , Calcium/analysis , Luminescent Agents/chemistry , Luminescent Measurements/methods , Aequorin/metabolism , Animals , Calcium/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , High-Throughput Screening Assays/methods , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Luminescent Agents/metabolism , Mitochondria/metabolism , Models, Molecular , Pyrazines/chemistry , Pyrazines/metabolism , Scyphozoa/chemistry
16.
Pflugers Arch ; 470(8): 1165-1179, 2018 08.
Article in English | MEDLINE | ID: mdl-29541860

ABSTRACT

Mitochondrial Ca2+ is involved in heterogeneous functions, ranging from the control of metabolism and ATP production to the regulation of cell death. In addition, mitochondrial Ca2+ uptake contributes to cytosolic [Ca2+] shaping thus impinging on specific Ca2+-dependent events. Mitochondrial Ca2+ concentration is controlled by influx and efflux pathways: the former controlled by the activity of the mitochondrial Ca2+ uniporter (MCU), the latter by the Na+/Ca2+ exchanger (NCLX) and the H+/Ca2+ (mHCX) exchanger. The molecular identities of MCU and of NCLX have been recently unraveled, thus allowing genetic studies on their physiopathological relevance. After a general framework on the significance of mitochondrial Ca2+ uptake, this review discusses the structure of the MCU complex and the regulation of its activity, the importance of mitochondrial Ca2+ signaling in different physiological settings, and the consequences of MCU modulation on organ physiology.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Animals , Calcium Channels/metabolism , Calcium Signaling/physiology , Humans , Mitochondria/physiology , Models, Animal , Sodium-Calcium Exchanger/metabolism
17.
Sci Rep ; 7(1): 6521, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28747684

ABSTRACT

A finely tuned Ca2+ homeostasis in restricted cell domains is of fundamental importance for neurons, where transient Ca2+ oscillations direct the proper coordination of electro-chemical signals and overall neuronal metabolism. Once such a precise regulation is unbalanced, however, neuronal functions and viability are severely compromised. Accordingly, disturbed Ca2+ metabolism has often been claimed as a major contributor to different neurodegenerative disorders, such as amyotrophic lateral sclerosis that is characterised by selective motor neuron (MN) damage. This notion highlights the need for probes for the specific and precise analysis of local Ca2+ dynamics in MNs. Here, we generated and functionally validated adeno-associated viral vectors for the expression of gene-encoded fluorescent Ca2+ indicators targeted to different cell domains, under the transcriptional control of a MN-specific promoter. We demonstrated that the probes are specifically expressed, and allow reliable local Ca2+ measurements, in MNs from murine primary spinal cord cultures, and can also be expressed in spinal cord MNs in vivo, upon systemic administration to newborn mice. Preliminary analyses using these novel vectors have shown larger cytosolic Ca2+ responses following stimulation of AMPA receptors in the cytosol of primary cultured MNs from a murine genetic model of ALS compared to the healthy counterpart.


Subject(s)
Calcium/metabolism , Dependovirus/genetics , Fluorescent Dyes/analysis , Genes, Reporter , Genetic Vectors , Homeostasis , Motor Neurons/physiology , Animals , Mice
18.
J Cell Sci ; 130(16): 2736-2746, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28701513

ABSTRACT

The cellular prion protein (PrPC) whose conformational misfolding leads to the production of deadly prions, has a still-unclarified cellular function despite decades of intensive research. Following our recent finding that PrPC limits Ca2+ entry via store-operated Ca2+ channels in neurons, we investigated whether the protein could also control the activity of ionotropic glutamate receptors (iGluRs). To this end, we compared local Ca2+ movements in primary cerebellar granule neurons and cortical neurons transduced with genetically encoded Ca2+ probes and expressing, or not expressing, PrPC Our investigation demonstrated that PrPC downregulates Ca2+ entry through each specific agonist-stimulated iGluR and after stimulation by glutamate. We found that, although PrP-knockout (KO) mitochondria were displaced from the plasma membrane, glutamate addition resulted in a higher mitochondrial Ca2+ uptake in PrP-KO neurons than in their PrPC-expressing counterpart. This was because the increased Ca2+ entry through iGluRs in PrP-KO neurons led to a parallel increase in Ca2+-induced Ca2+ release via ryanodine receptor channels. These data thus suggest that PrPC takes part in the cell apparatus controlling Ca2+ homeostasis, and that PrPC is involved in protecting neurons from toxic Ca2+ overloads.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Glutamic Acid/pharmacology , Mitochondria/metabolism , Neurons/metabolism , Prion Proteins/physiology , Animals , Calcium/toxicity , Calcium Signaling/genetics , Cells, Cultured , Glutamic Acid/metabolism , Mice , Mice, Knockout , Mitochondria/drug effects , Neurons/drug effects , Neuroprotection/genetics , Prion Proteins/genetics
19.
Front Neurosci ; 11: 3, 2017.
Article in English | MEDLINE | ID: mdl-28154522

ABSTRACT

Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the ß sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression "prion-like diseases" refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid ß, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and on low intake of meat, could play a preventive or delaying role in prion and prion-like neurodegenerative diseases. In this review, metal role in the onset of prion and prion-like diseases is dealt with from a nutritional, cellular, and molecular point of view.

20.
Biochem Biophys Res Commun ; 483(4): 1096-1109, 2017 02 19.
Article in English | MEDLINE | ID: mdl-27416756

ABSTRACT

In the last years, a considerable amount of experimental evidence has highlighted the association between neurodegenerative disorders (NDD) and the biology of mitochondria-Endoplasmic Reticulum contacts (MERCs). In this review, we summarize the most recent findings on this topic. We underline that dysregulation of MERCs can contribute to the neurodegenerative process either by altering directly the functionality of neurons and their response to stress stimuli and metabolic shifts or by indirectly influencing the neuroinflammatory response that accompanies NDD. Our overview of the current literature suggest that defective MERCs could be a common determinant to the "hypergeneration" and "neurodegeneration" programs, leading respectively to tumours and NDD.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Animals , Endoplasmic Reticulum/ultrastructure , Humans , Inflammation/metabolism , Microscopy, Electron, Transmission , Mitochondria/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...