Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 22(12): e2200281, 2022 12.
Article in English | MEDLINE | ID: mdl-36125638

ABSTRACT

Macrophages play a diverse, key role in many pathologies, including inflammatory diseases, cardiovascular diseases, and cancer. However, many therapeutic strategies targeting macrophages suffer from systemic off-target toxicity resulting in notoriously narrow therapeutic windows. To address this shortcoming, the development of poly(propylene sulfide)-b-poly(methacrylamidoglucopyranose) [PPS-b-PMAG] diblock copolymer-based nanoparticles (PMAG NPs) capable of targeting macrophages and releasing drug in the presence of reactive oxygen species (ROS) is reported. PMAG NPs have desirable physicochemical properties for systemic drug delivery, including slightly negative surface charge, ≈100 nm diameter, and hemo-compatibility. Additionally, due to the presence of PPS in the NP core, PMAG NPs release drug cargo preferentially in the presence of ROS. Importantly, PMAG NPs display high cytocompatibility and are taken up by macrophages in cell culture at a rate ≈18-fold higher than PEGMA NPs-NPs composed of PPS-b-poly(oligoethylene glycol methacrylate). Computational studies indicate that PMAG NPs likely bind with glucose transporters such as GLUT 1/3 on the macrophage cell surface to facilitate high levels of internalization. Collectively, this study introduces glycopolymeric NPs that are uniquely capable of both receptor-ligand targeting to macrophages and ROS-dependent drug release and that can be useful in many immunotherapeutic settings.


Subject(s)
Drug Delivery Systems , Nanoparticles , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Macrophages/metabolism , Polymers/chemistry
2.
Langmuir ; 37(31): 9560-9570, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34328747

ABSTRACT

Acetaminophen (APAP) or paracetamol, despite its wide and common use for pain and fever symptoms, shows a variety of side effects, toxic effects, and overdose effects. The most common form of toxic effects of APAP is in the liver where phosphatidylcholine is the major component of the cell membrane with additional associated functionalities. Although this is the case, the effects of APAP on pure phospholipid membranes have been largely ignored. Here, we used 1,2-di-(octadecenoyl)-sn-glycero-3-phosphocholine (DOPC), a commonly found phospholipid in mammalian cell membranes, to synthesize large unilamellar vesicles to investigate how the incorporation of APAP changes the pure lipid vesicle structure, morphology, and fluidity at different concentrations. We used a combination of dynamic light scattering, small-angle neutron and X-ray scattering (SANS, SAXS), and cryo-TEM for structural characterization, and neutron spin-echo (NSE) spectroscopy to investigate the dynamics. We showed that the incorporation of APAP in the lipid bilayer significantly impacts the spherical phospholipid self-assembly in terms of its morphology and influences the lipid content in the bilayer, causing a decrease in bending rigidity. We observe a decrease in the number of lipids per vesicle by almost 28% (0.06 wt % APAP) and 19% (0.12 wt % APAP) compared to the pure DOPC (0 wt % APAP). Our results showed that the incorporation of APAP reduces the membrane rigidity by almost 50% and changes the spherical unilamellar vesicles into much more irregularly shaped vesicles. Although the bilayer structure did not show much change when observed by SAXS, NSE and cryo-TEM results showed the lipid dynamics change with the addition of APAP in the bilayer, which causes the overall decreased membrane rigidity. A strong effect on the lipid tail motion showed that the space explored by the lipid tails increases by a factor of 1.45 (for 0.06 wt % APAP) and 1.75 (for 0.12 wt % APAP) compared to DOPC without the drug.


Subject(s)
Acetaminophen , Phospholipids , Acetaminophen/toxicity , Lipid Bilayers , Phosphatidylcholines , Scattering, Small Angle , X-Ray Diffraction
3.
Langmuir ; 37(7): 2362-2375, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33570419

ABSTRACT

We investigated the influence of an n-alkyl-PEO polymer on the structure and dynamics of phospholipid vesicles. Multilayer formation and about a 9% increase in the size in vesicles were observed by cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and small-angle neutron/X-ray scattering (SANS/SAXS). The results indicate a change in the lamellar structure of the vesicles by a partial disruption caused by polymer chains, which seems to correlate with about a 30% reduction in bending rigidity per unit bilayer, as revealed by neutron spin echo (NSE) spectroscopy. Also, a strong change in lipid tail relaxation was observed. Our results point to opportunities using synthetic polymers to control the structure and dynamics of membranes, with possible applications in technical materials and also in drug and nutraceutical delivery.


Subject(s)
Phospholipids , Polyethylene Glycols , Ethylene Oxide , Scattering, Small Angle , X-Ray Diffraction
4.
Langmuir ; 36(32): 9356-9367, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32672981

ABSTRACT

Sodium chloride (NaCl) is a very common molecule in biotic and abiotic aqueous environments. In both cases, variation of ionic strength is inevitable. In addition to the osmotic variation posed by such perturbations, the question of whether the interactions of monovalent ions Na+ and Cl-, especially with the neutral head groups of phospholipid membranes are impactful enough to change the membrane rigidity, is still not entirely understood. We investigated the dynamics of 1,2-di-(octadecenoyl)-sn-glycero-3-phosphocholine (DOPC) vesicles with zwitterionic neutral head groups in the fluid phase with increasing external salt concentration. At higher salt concentrations, we observe an increase in bending rigidity from neutron spin echo (NSE) spectroscopy and an increase in bilayer thickness from small-angle X-ray scattering (SAXS). We compared different models to distinguish membrane undulations, lipid tail motions, and the translational diffusion of the vesicles. All of the models indicate an increase in bending rigidity by a factor of 1.3-3.6. We demonstrate that even down to t > 10 ns and for Q > 0.07 Å-1, the observed NSE relaxation spectra are influenced by translational diffusion of the vesicles. For t < 5 ns, the lipid tail motion dominates the intermediate dynamic structure factor. As the salt concentration increases, this contribution diminishes. We introduced a time-dependent analysis for the bending rigidity that highlights only a limited Zilman-Granek time window in which the rigidity is physically meaningful.


Subject(s)
Lipid Bilayers , Sodium Chloride , Phosphatidylcholines , Scattering, Small Angle , X-Ray Diffraction
5.
ACS Omega ; 5(17): 9892-9902, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32391476

ABSTRACT

A lignin-graft-poly(lactic-co-glycolic) acid (PLGA) biopolymer was synthesized with two types of lignin (LGN), alkaline lignin (ALGN) and sodium lignosulfonate (SLGN), at different (A/S)LGN/PLGA ratios (1:2, 1:4, and 1:6 w/w). 1H NMR and Fourier-transform infrared spectroscopy (FT-IR) confirmed the conjugation of PLGA to LGN. The (A/S)LGN-graft-PLGA biopolymers were used to form nanodelivery systems suitable for entrapment and delivery of drugs for disease treatment. The LGN-graft-PLGA NPs were generally small (100-200 nm), increased in size with the amount of PLGA added, monodisperse, and negatively charged (-48 to -60 mV). Small-angle scattering data showed that particles feature a relatively smooth surface and a compact spherical structure with a distinct core and a shell. The core size and shell thickness varied with the LGN/PLGA ratio, and at a 1:6 ratio, the particles deviated from the core-shell structure to a complex internal structure. The newly developed (A/S)LGN-graft-PLGA NPs are proposed as a potential delivery system for applications in biopharmaceutical, food, and agricultural sectors.

7.
J Phys Chem Lett ; 9(11): 2956-2960, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29754484

ABSTRACT

We investigated the molecular dynamics of unilamellar liposomes by neutron spin echo spectroscopy. We report the first experimental evidence of a short-range motion at the length scale of the size of the headgroup of a lipid. The associated mean squared displacement shows a t0.26 dependence in the pico- to nanosecond region that indicates another process beyond the predictions of the Zilman-Granek (ZG) model ( t0.66) and translational diffusion ( t1). A comparison with theory shows that the observed low exponent is associated with a non-Gaussian transient trapping of lipid molecules in a local area and supports the continuous time random walk model. The analysis of the mean squared displacement leads to the important conclusion that the friction at the interface between water and liposomes plays a minor role. Center of mass diffusion of liposomes and transient trapping of lipids define the range in which the ZG model can be applied to analyze membrane fluctuations.


Subject(s)
Liposomes/chemistry , Molecular Dynamics Simulation , Cryoelectron Microscopy , Dimyristoylphosphatidylcholine/chemistry , Dynamic Light Scattering , Neutron Diffraction , Phosphatidylcholines/chemistry , Scattering, Small Angle
SELECTION OF CITATIONS
SEARCH DETAIL
...