Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Mech Behav Biomed Mater ; 100: 103389, 2019 12.
Article in English | MEDLINE | ID: mdl-31398693

ABSTRACT

The present study elucidates the mechanical performance of different designs of resin-bonded fixed dental prostheses made of lithium disilicate simulating masticatory loads of anterior or canine guidance. A three-dimensional model of maxilla was constructed containing central incisor and canine teeth, with edentulous space of the lateral incisor. Three designs of prosthesis were created: retained in central incisor (1-I), retained in canine (1-C) and fixed in both teeth (2-IC). The computational analysis was performed for load in canine and central incisor separately (100N, 45°). The tensile and shear stresses were calculated for the resin-bonded fixed dental prosthesis, bonding surface of each retainer and cement layer using 3D finite element analysis. The 20 highest stress values were analyzed using two-way ANOVA and post-hoc Tukey test, all with α = 5%. The computational analysis showed that 2-retainer resin-bonded fixed dental prosthesis presented the worst prognosis regardless of the mandibular movement. ANOVA showed that Mandibular movement*Retainer interaction influenced on the tensile and shear stresses values (p < 0.01). Higher stresses were observed in the connector region for all groups (13-82.2 MPa; 11-70.2 MPa). In order to reduce the stress concentration in the resin-bonded fixed dental prosthesis and the retainer made of lithium disilicate, the occlusion may serve as the selection criteria of the unitary abutment for better sustainability.


Subject(s)
Dental Porcelain/chemistry , Dental Prosthesis , Dental Stress Analysis/methods , Imaging, Three-Dimensional/methods , Orthodontic Appliances, Fixed , Resins, Synthetic , Computer Simulation , Cuspid/physiology , Finite Element Analysis , Humans , Incisor/physiology , Mandible/physiology , Materials Testing , Maxilla , Prognosis , Shear Strength , Stress, Mechanical , Tensile Strength , Tooth/physiology
2.
J Mech Behav Biomed Mater ; 96: 279-284, 2019 08.
Article in English | MEDLINE | ID: mdl-31077955

ABSTRACT

The goal of this study was to compare the mechanical response of resin-bonded fixed dental prosthesis (RBFDP) made in zirconia, metal, lithium disilicate and composite resin cemented using resin cements with different elastic modulus. For the finite element analysis, a three-dimensional model of partial right maxilla was used to create a model with edentulous space in the second premolar and the cavity's preparation on the first pre-molar and first molar to receive a RBFDP. The model was imported to the analysis software in which they were divided into mesh composed by nodes (371,101) and tetrahedral elements (213,673). Each material was considered isotropic, elastic and homogeneous. No-separation contacts were considered between restoration/resin cement and resin cement/tooth. For all other structures the contacts were considered ideal. The model fixation occurred at the base of the bone and an axial load of 300 N was applied on the pontic occlusal surface. To simulate polymerization shrinkage effects on the cement, the thermal expansion approach was used. The displacement and maximum principal stress (in MPa) were selected as failure criteria. The prosthesis made in composite resin showed higher displacement, while in zirconia showed higher stress concentration. Tensile stress between restoration/cement, cement and cement/cavity was directly proportional to the restorative material's elastic modulus. The more rigid cement increases the tensile zones in the cement layer but decreases the stress between prosthesis and cement. The molar cavity showed higher stress concentration between restoration/cement than the preparation in the pre-molar tooth. The use of composite resin for the manufacturing of RBFDP increases the displacement of the set during the loading. However, it reduces the amount of stress concentration at the adhesive interface in comparison with the other materials.


Subject(s)
Dental Prosthesis , Finite Element Analysis , Resin Cements , Stress, Mechanical , Elastic Modulus , Materials Testing
3.
J Endod ; 41(5): 710-4, 2015 May.
Article in English | MEDLINE | ID: mdl-25698261

ABSTRACT

INTRODUCTION: Antibiotic-containing polymer-based nanofibers (hereafter referred to as scaffolds) have demonstrated great potential for their use in regenerative endodontics from both an antimicrobial and cytocompatibility perspective. This study sought to evaluate in vitro the effects of ciprofloxacin (CIP)-containing polymer scaffolds against Enterococcus faecalis biofilms. METHODS: Human mandibular incisors were longitudinally sectioned to prepare radicular dentin specimens. Sterile dentin specimens were distributed in 24-well plates and inoculated with E. faecalis for biofilm formation. Infected dentin specimens were exposed to 3 groups of scaffolds, namely polydioxanone (PDS) (control), PDS + 5 wt% CIP, and PDS + 25 wt% CIP for 2 days. Colony-forming units (CFU/mL) (n = 10) and scanning electron microscopy (SEM) (n = 2) were performed to quantitatively and qualitatively assess the antimicrobial effectiveness, respectively. RESULTS: PDS scaffold containing CIP at 25 wt% showed maximum bacteria elimination with no microbial growth, differing statistically (P < .05) from the control (PDS) and from PDS scaffold containing CIP at 5 wt%. Statistical differences (P < .05) were also seen for the CFU/mL data between pure PDS (5.92-6.02 log CFU/mL) and the PDS scaffold containing CIP at 5 wt% (5.39-5.87 log CFU/mL). SEM images revealed a greater concentration of bacteria on the middle third of the dentin specimen after 5 days of biofilm formation. On scaffold exposures, SEM images showed similar results when compared with the CFU/mL data. Dentin specimens exposed to PDS + 25 wt% CIP scaffolds displayed a practically bacteria-free surface. CONCLUSIONS: On the basis of the data presented, newly developed antibiotic-containing electrospun scaffolds hold promise as an intracanal medicament to eliminate biofilm/infection before regenerative procedures.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Ciprofloxacin/pharmacology , Dentin/microbiology , Enterococcus faecalis/physiology , Enterococcus faecalis/drug effects , Humans , Incisor
4.
Acta Odontol Latinoam ; 23(2): 129-35, 2010.
Article in English | MEDLINE | ID: mdl-21053686

ABSTRACT

Polymerization of indirect resin composites (IRC) is carried out in the 'laboratories using special photo-polymerization devices to achieve a higher degree of conversion (DC). Such devices present variation in chambers and light output which may have consequences on the chemical and physical properties of IRCs. This study evaluated the effect of different polymerization devices on the flexural strength, Vickers microhardness and DC of an IRC. Specimens were prepared from an IRC material, Sinfony (3M ESPE), using special molds for flexural strength test (N=30) (25 x 2 x 2 mm, ISO 4049), Vickers microhardness test (N=30) (5 x 4 mm) and for DC (N=30) utilizing Micro-raman Spectroscopy. All specimens were submitted to initial polymerization with a Visio Alpha unit (3M ESPE) and then randomly divided into three groups (n=10/ group). Specimens in Group 1 (control) received additional polymerizations using a Visio Beta Vario device (3M ESPE), and those in Group 2 and Group 3 using Powerlux (EDG) and Strobolux (EDG) devices, respectively. DC and mechanical tests were then conducted. For the mechanical tests, the data were analyzed using ANOVA and Tukey's tests (p < 0.05) and for DC, one-way ANOVA was used. Polymerization in Strobolux (Group 3) resulted in significantly lower flexural strength (MPa) values (134 +/- 27) compared to Visio Beta Vario (165 +/- 20) (Group 1) (p < 0.05). The lowest microhardness values (Kg/mm2) were obtained in Group 3 (30 +/- 1) (p < 0.05). DC was similar in all groups (75 +/- 1, 91 +/- 5, 85 +/- 7% for Visio Beta Vario, Powerlux and Strobolux, respectively) (p = 0.1205). The type of polymerization device may affect the flexural strength and Vickers hardness of the IRC tested. DC also seems to be affected by the type of polymerization device but the results were not significant.


Subject(s)
Composite Resins , Polymerization , Equipment Design , Hardness Tests , Materials Testing
5.
Acta odontol. latinoam ; 23(2): 129-135, Sept. 2010. ilus, tab
Article in English | LILACS | ID: biblio-949650

ABSTRACT

Polymerization of indirect resin composites (IRC) is carried out in the laboratories using special photo-polymerization devices to achieve a higher degree of conversion (DC). Such devices present variation in chambers and light output which may have consequences on the chemical and physical properties of IRCs. This study evaluated the effect of different polymerization devices on the flexural strength, Vickers microhardness and DC of an IRC. Specimens were prepared from an IRC material, Sinfony (3M ESPE), using special molds for flexural strength test (N=30) (25x2x2 mm, ISO 4049), Vickers microhardness test (N=30) (5x4 mm) and for DC (N=30) utilizing Micro-raman Spectroscopy. All specimens were submitted to initial polymerization with a Visio Alpha unit (3M ESPE) and then randomly divided into three groups (n=10/ group). Specimens in Group 1 (control) received additional polymerizations using a Visio Beta Vario device (3M ESPE), and those in Group 2 and Group 3 using Powerlux (EDG) and Strobolux (EDG) devices, respectively. DC and mechanical tests were then conducted. For the mechanical tests, the data were analyzed using ANOVA and Tukey's tests (p<0.05) and for DC, one-way ANOVA was used. Polymerization in Strobolux (Group 3) resulted in significantly lower flexural strength (MPa) values (134±27) compared to Visio Beta Vario (165±20) (Group 1) (p<0.05). The lowest microhardness values (Kg/mm2) were obtained in Group 3 (30±1) (p<0.05). DC was similar in all groups (75±1, 91±5, 85±7 % for Visio Beta Vario, Powerlux and Strobolux, respectively) (p=0.1205). The type of polymerization device may affect the flexural strength and Vickers hardness of the IRC tested. DC also seems to be affected by the type of polymerization device but the results were not significant.


As polimerizacoes de resinas compostas indiretas (RCI) sao realizadas em Laboratorio em dispositivos fotopolimerizadores especiais para que seja alcancado um maior grau de conversao (GC). Estes dispositivos apresentam variacoes nas cameras e nas lampadas polimerizadoras as quais podem gerar consequencias nas propriedades fisicas e quimicas das RCIs. Este estudo avaliou o efeito de diferentes unidades polimerizadoras na resistencia a flexao, dureza Vickers e GC de uma RCI. Amostras da RCI Sinfony (3M ESPE) foram preparadas, utilizando matrizes especiais para o teste de resistencia a flexao (N=30) (25x2x2 mm, ISO 4049), teste de microdureza Vickers (N=30) (5x4 mm) e para o GC (N=30), utilizando a espectroscopia Micro-raman. Todas as amostras foram submetidas a polimerizacao inicial na unidade Visio Alpha (3M ESPE) e em seguida elas foram divididas aleatoriamente em tres grupos (n=10/por grupo). As amostras do Gr1 (controle) tiveram sua polimerizacao final realizada na unidade Visio Beta Vario (3M ESPE), e as do Gr2 e Gr3 nas unidades Powerlux (EDG) e Strobolux (EDG), respectivamente e entao os testes mecanicos e do GC foram conduzidos. Para os testes mecanicos, os dados foram analisados utilizando a analise de Variancia (ANOVA) e o teste de Tukey (p<0.05) e ANOVA 1-fator para o GC. A polimerizacao na unidade Strobolux (Gr3) gerou valores de resistencia a flexao (MPa) significativamente inferiores (134±27) comparado a unidade Visio Beta Vario (165±20) (Gr1) (p<0.05). Os menores valores de microdureza (Kg/mm2) foram obtidos para o Gr3 (30±1) (p<0.05). O GC em todas as unidades polimerizadoras (75±1, 91±5, 85±7 % para Visio Beta Vario, Powerlux e Strobolux, respectivamente) foi semelhante entre os grupos (p=0.1205). O tipo de unidade polimerizadora afetou a resistencia a flexao e a dureza Vickers da RCI testada. O GC tambem foi afetado pelo tipo de unidade polimerizadora, mas a diferenca nao foi significativa.


Subject(s)
Composite Resins , Polymerization , Materials Testing , Equipment Design , Hardness Tests
6.
J Prosthodont ; 19(3): 218-25, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20040031

ABSTRACT

PURPOSE: This study evaluated the degree of conversion (DC) of four indirect resin composites (IRCs) with various compositions processed in different polymerization units and investigated the effect of thermal aging on the flexural strength and Vicker's microhardness. MATERIALS AND METHODS: Specimens were prepared from four IRC materials, namely Gr 1: Resilab (Wilcos); Gr2: Sinfony (3M ESPE); Gr3: VITA VMLC (VITA Zahnfabrik); Gr4: VITA Zeta (VITA Zahnfabrik) using special molds for flexural strength test (N = 80, n = 10 per group) (25 x 2 x 2 mm(3), ISO 4049), for Vicker's microhardness test (N = 80, n = 10 per group) (5 x 4 mm(2)) and for DC (N = 10) using FT-Raman Spectroscopy. For both flexural strength and microhardness tests, half of the specimens were randomly stored in distilled water at 37 degrees C for 24 hours (Groups 1 to 4), and the other half (Groups 5 to 8) were subjected to thermocycling (5000 cycles, 5 to 55 +/- 1 degree C, dwell time: 30 seconds). Flexural strength was measured in a universal testing machine (crosshead speed: 0.8 mm/min). Microhardness test was performed at 50 g. The data were analyzed using one-way and two-way ANOVA and Tukey's test (alpha= 0.05). The correlation between flexural strength and microhardness was evaluated with Pearson's correlation test (alpha= 0.05). RESULTS: A significant effect for the type of IRC and thermocycling was found (p= 0.001, p= 0.001) on the flexural strength results, but thermocycling did not significantly affect the microhardness results (p= 0.078). The interaction factors were significant for both flexural strength and microhardness parameters (p= 0.001 and 0.002, respectively). Thermocycling decreased the flexural strength of the three IRCs tested significantly (p < 0.05), except for VITA Zeta (106.3 +/- 9.1 to 97.2 +/- 14 MPa) (p > 0.05) when compared with nonthermocycled groups. Microhardness results of only Sinfony were significantly affected by thermocycling (25.1 +/- 2.1 to 31 +/- 3.3 Kg/mm(2)). DC values ranged between 63% and 81%, and were not significantly different between the IRCs (p > 0.05). While a positive correlation was found between flexural strength and microhardness without (r = 0.309) and with thermocycling (r = 0.100) for VITA VMLC, negative correlations were found for Resilab under the same conditions (r =-0.190 and -0.305, respectively) (Pearson's correlation coefficient). CONCLUSION: Although all four IRCs presented nonsignificant DC values, flexural strength and microhardness values varied between materials with and without thermocycling.


Subject(s)
Composite Resins/chemistry , Dental Materials/chemistry , Aluminum Silicates/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Chemical Phenomena , Dental Stress Analysis/instrumentation , Hardness , Humans , Materials Testing , Methacrylates/chemistry , Pliability , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Stress, Mechanical , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...