Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131666, 2024 May.
Article in English | MEDLINE | ID: mdl-38636755

ABSTRACT

Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.


Subject(s)
Biocompatible Materials , Drug Delivery Systems , Latex , Regenerative Medicine , Rubber , Humans , Biocompatible Materials/chemistry , Latex/chemistry , Regenerative Medicine/methods , Rubber/chemistry , Wound Healing/drug effects
2.
Biomater Adv ; 157: 213754, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211507

ABSTRACT

Chronic wounds pose significant health concerns. Current treatment options include natural compounds like natural rubber latex (NRL) from Hevea brasiliensis. NRL, particularly the F1 protein fraction, has demonstrated bioactivity, biocompatibility, and angiogenic effects. So far, there is no study comparing F1 protein with total NRL serum, and the necessity of downstream processing remains unknown. Here, we evaluated the angiogenic potential of F1 protein compared to total NRL serum and the need for downstream processing. For that, ion exchange chromatography (DEAE-Sepharose), antioxidant activity, physicochemical characterization, cell culture in McCoy fibroblasts, and wound healing in Balb-C mice were performed. Also, the evaluation of histology and collagen content and the levels of inflammatory mediators were quantified. McCoy fibroblast cell assay showed that F1 protein (0.01 %) and total NRL serum (0.01 %) significantly increased cell proliferation by 47.1 ± 11.3 % and 25.5 ± 2.5 %, respectively. However, the AA of F1 protein (78.9 ± 0.8 %) did not show a significant difference compared to NRL serum (77.0 ± 1.1 %). F1 protein and NRL serum were more effective in wound management in rodents. Histopathological analysis confirmed accelerated healing and advanced tissue repair. Similarly, the F1 protein (0.01 %) increased collagen, showing that this fraction can stimulate the synthesis of collagen by fibroblastic cells. Regarding cytokines production (IL-10, TNF-α, IFN-γ), F1 protein and NRL serum did not exert an impact on the synthesis of these cytokines. Furthermore, we did not observe statistically significant changes in dosages of enzymes (MPO and EPO) among the groups. Nevertheless, Nitric Oxide dosage was reduced drastically when the F1 protein (0.01 %) protein was applied topically. These findings contribute to the understanding of F1 protein and NRL serum properties and provide insights into cost-effectiveness and practical applications in medicine and biotechnology. Therefore, further research is needed to assess the economic feasibility of downstream processing for NRL-based herbal medicine derived from Hevea brasiliensis.


Subject(s)
Hevea , Rubber , Animals , Mice , Latex , Hevea/chemistry , Wound Healing , Collagen , Cytokines
3.
J Biomater Sci Polym Ed ; 33(6): 705-726, 2022 04.
Article in English | MEDLINE | ID: mdl-34927570

ABSTRACT

Natural latex serum (NLS) is one of the natural rubber latex fractions from Hevea brasiliensis tree, which is formed by centrifuged serum and is composed of proteins, acids, nucleotides, salts and carbohydrates. The proteins present in NLS have demonstrated several interesting biological properties, including angiogenic, healing, osteogenic, anti-inflammatory, antimicrobial, in addition to inducing neovascularization, bone formation and osseointegration. Thus, we proposed to characterize NLS by physicochemical techniques and to investigate the biocompatibility by toxicological assays and safety test in Galleria mellonella. Infrared spectrum showed vibrational bands characteristic of amide I, II and III that are linked to the protein content, which was confirmed by the High Performance Liquid Chromatography profile and by the Electrophoresis analysis. This material did not exhibit hemolytic (rate <0.5%) and cytotoxic effects (viability >70%) and was able to enhance the proliferation of fibroblasts (>600%) after 3 days. The pronounced proliferative effect observed in fibroblast cells can be explained by the presence of the fibroblast growth factor (FGF) like protein revealed by the Western blot test. Moreover, NLS did not provoke toxic effects (survival ∼ 80%) on the G. mellonella model, indicating that it is a biocompatible and safe material.


Subject(s)
Hevea , Latex , Hevea/chemistry , Latex/chemistry , Plant Proteins/metabolism , Proteins , Wound Healing
4.
J Bras Nefrol ; 36(4): 502-11, 2014.
Article in English, Portuguese | MEDLINE | ID: mdl-25517280

ABSTRACT

INTRODUCTION: There are few studies about costs of inputs used in hemodialysis and among these expenditures, the compounds that make up the dialysate are one of the values considered as representative of this therapy. However, there aren't costs studies that guiding solutions. OBJECTIVE: The objective of this article is discuss whether there is wasteful of alkaline solutions in ambulatory hemodialysis and hence the possibility of reduction in cost from the standardization process simulation of establishment of dialysate flow in periods between shifts in hemodialysis outpatients. METHODS: Starting from an observational analytic, a simulation was performed twenty case scenarios, which ten cases established by standardizing processes control on the dialysate flow in recession. The combination of data was performed using as a basis the prices of three suppliers of alkali liquid or powder. RESULTS: It was observed among the scenarios with standardized processes, ranging between 7.7% and 33.3% savings in the alkaline solution cost (powder or liquid), by reducing waste. CONCLUSION: It is possible to restrain the wasteful use of alkaline solutions, both powder and liquid. Consequently, its cost from the patterning on reducing the flow of dialysate during the intervals between shifts observed in the outpatient hemodialysis. However, these results are conditional upon the commitment of health professionals, mainly to supervision exercise and control of activities in quality function deployment.


Subject(s)
Alkalies/economics , Costs and Cost Analysis , Dialysis Solutions/economics , Renal Dialysis/economics , Humans , Process Assessment, Health Care
5.
Clin Implant Dent Relat Res ; 14(1): 135-43, 2012 Mar.
Article in English | MEDLINE | ID: mdl-19793333

ABSTRACT

BACKGROUND: In sites with diminished bone volume, the osseointegration of dental implants can be compromised. Innovative biomaterials have been developed to aid successful osseointegration outcomes. PURPOSE: The aim of this study was to evaluate the osteogenic potential of angiogenic latex proteins for improved bone formation and osseointegration of dental implants. MATERIALS AND METHODS: Ten dogs were submitted to bilateral circumferential defects (5.0 × 6.3 mm) in the mandible. Dental implant (3.3 × 10.0 mm, TiUnite MK3™, Nobel Biocare AB, Göteborg, Sweden) was installed in the center of the defects. The gap was filled either with coagulum (Cg), autogenous bone graft (BG), or latex angiogenic proteins pool (LPP). Five animals were sacrificed after 4 weeks and 12 weeks, respectively. Implant stability was evaluated using resonance frequency analysis (Osstell Mentor, Osstell AB, Göteborg, Sweden), and bone formation was analyzed by histological and histometric analysis. RESULTS: LPP showed bone regeneration similar to BG and Cg at 4 weeks and 12 weeks, respectively (p ≥ .05). Bone formation, osseointegration, and implant stability improved significantly from 4 to 12 weeks (p ≤ .05). CONCLUSION: Based on methodological limitations of this study, Cg alone delivers higher bone formation in the defect as compared with BG at 12 weeks; compared with Cg and BG, the treatment with LPP exhibits no advantage in terms of osteogenic potential in this experimental model, although overall osseointegration was not affected by the treatments employed in this study.


Subject(s)
Alveolar Ridge Augmentation/methods , Bone Regeneration/drug effects , Dental Implants , Hevea , Latex , Osseointegration/drug effects , Plant Proteins/pharmacology , Angiogenic Proteins/pharmacology , Animals , Blood Coagulation , Bone Transplantation , Dogs , Male , Mandible/surgery , Neovascularization, Physiologic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL